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Abstract—This paper addresses the challenges of integrating
existing PHEV charging algorithms, which optimize PHEV
charging per market timeslot (e.g. 15 minutes), into an environ-
ment with realistic communication conditions. To address this
challenge, we propose a dual coordination mechanism, which
controls a cluster of devices on two different operation levels:
market operation and real-time operation. The market operation
level uses an existing timeslot-based algorithm to calculate a
charging schedule per timeslot. The real-time operation level
translates this schedule into event-based control actions for a
realistic communication environment, wherein a limited number
of messages can be exchanged. A case study of 1000 PHEVs shows
that it is possible to achieve results on par with the timeslot based
algorithm but with significantly reduced communication with the
PHEVs.

Index Terms—Event-Driven, Demand Response, Communica-
tion, Electric vehicles, Coordination

I. INTRODUCTION

ECAUSE of growing concerns about the environment

and the decreasing reserves of fossil fuel, the transport
industry is shifting towards full or (plug-in) hybrid electric
vehicles (PHEVs). At the same time, government policies
and subsidies are expected to push the share of renewable
electricity generation, such as wind and photovoltaic power,
to about 18% in 2035 [1]. However, these energy sources are
greatly affected by variability and limited predictability.

One enabling technology is Demand Side Management
(DSM), wherein loads are shifted to periods of time where
this is beneficial from a cost or grid stability perspective.
DSM is already applied today, but typically only for high-
use industrial consumers. (PH)EVs are well suited for this
type of control due to their high energy requirements and
relatively long charging times. A fleet of charging PHEVs
managed by a DSM aggregator [2] could act as a single entity
on the energy market(s), and react to fluctuations in generation
and consumption. In current literature, several algorithms are
proposed for this purpose. However, realistic communication
conditions are typically neglected.
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In DSM of PHEVs, communication plays an important role;
PHEVs send charging requirements to an aggregator, while ag-
gregators need to communicate control signals to EVs in order
to steer charging power. In terms of integrating algorithms
into a realistic communication environment, we identified two
challenges: continuous coordination, and a limited exchange
of messages.

The first challenge is continuous coordination of PHEV
charging. In energy markets, charging only needs to be op-
timized in terms of energy per hour. However, in a real-
istic communication environment, PHEVs arrive and depart
continuously, and will send events at asynchronous times.
Consequently, charging needs to be coordinated at two levels:
a market level, per timeslot, and a real-time, event-driven level
that is focused on responsiveness.

The second challenge is limiting the exchange of messages
between PHEVs and aggregator. In a realistic communication
environment, the underlying infrastructure places constraints
on the communication, such as delays or maximum through-
put. In the latter case, the exchange of messages should be
limited by the coordination mechanism.

To cope with both challenges, we propose a dual coordina-
tion mechanism, which consists of a market operation level
and a real-time operation level:

1) The market operation level entails actions with the
goal of following beforehand traded volumes on the
wholesale electricity markets, where trading takes place
on relatively long-term scale (months, seasons) and
amounts are expressed as energy quantities (usually
MWh) in timeslots of typically 1 hour or 15 minutes.

2) The real-time operation level entails the actions to
comply with consumer preferences and respect local grid
constraints. Because changes and control are relatively
more instantaneous and dynamic at this level, real-time
operation is usually expressed in terms of electrical
power (e.g. kW). Granularity is in the range of minutes
to seconds. At this level, fast responses are important
and the number of exchanged messages will be limited.

In summary, the contributions of this paper are:

o Description of an event driven dual coordination mech-
anism, which allows for market and real-time operation
of the fleet. The market operation of the fleet is based on
an existing algorithm.

o Evaluation of the mechanism in varying scenarios, with
respect to the original algorithm. Results show a 3%
improvement in fleet charging costs. At the same time,



the number of messages exchanged with the PHEVs was
significantly reduced, by at least 64%.

II. RELATED WORK

To control charging PHEVs in a smart grid, several method-
ologies have been proposed. This section gives a representative
selection and positions our work in current research.

o In [3], DSM of (PH)EVs with the goal of minimizing
losses in a distribution grid is proposed. The approach is
centralized as all information is collected and processed
by a single aggregator. The PHEVs are simulated along-
side household consumption and compared to a scenario
with uncoordinated charging. In [4], load factor and load
variance are also taken into account.

o In [5], a system rooted in online market mechanism de-
sign is presented and applied to the coordinated charging
problem, with a focus on incentivising users to truthfully
report their demands. Probabilistic information on future
arrivals is used to improve scheduling. The system is
also compared to an offline benchmark that has prior
knowledge on vehicle arrivals.

e In, [6] the authors look at a Vehicle-to-Grid (V2G) sce-
nario that minimizes energy costs while reducing power
losses. To this end, a highly dimensional allocation prob-
lem is tackled with approximate dynamic programming.

o In [7], a system is proposed based on congestion pricing
and Quality of Service (QoS) concepts in TCP/IP net-
works. Each consumer determines his demand in the next
time-slot with a user utility function. An implied central
entity receives demand information from the appliances
and sends back pricing or incentive signals. The principle
used is dual decomposition.

e In [8], optimal demand-side management (DSM) is
achieved using a model derived from game-theory. Each
consumers scheduler is required to broadcast its con-
sumption schedule to all other participants in the DSM
programme. Schedule granularity is one hour.

e In [9], an EV charging algorithm based on queueing
theory and statistical analysis is used to maximize net-
work utilization. The use of message broadcasting would
allow the scheme to be used over one-way low bandwidth
communication links.

o The work of [10] looks at the effects of network perfor-
mance on cost optimization in a smart grid, while [11]
considers the cost of communication when updating
energy price information of home appliances.

In all of the above work, algorithms are based upon the
notion of timeslots, wherein time is divided into discrete
intervals with a typical fixed length of one hour or sometimes
15 minutes. This division closely matches with aforemen-
tioned market operation. While there is some work concerning
the link between communication and optimization in smart
grids [9], [10], it does not apply to the short-term, real-
time level of the coordination. However, in order to realise
large-scale native field implementations there is a need to be
able to coordinate devices (charging vehicles but also other
appliances) on a continuous timescale.
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---# Step3: Control
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Fig. 1. Agent structure for the tree-step approach.

III. BACKGROUND: THREE-STEP APPROACH

In our previous work, a three-step charging algorithm was
presented, which optimizes EV charging per market time-
slot [12]. Based on this algorithm, we present a dual coor-
dination mechanism in this paper (section IV). This section
gives a brief overview of the three-step charging algorithm.

A. Agent structure

The agent structure is represented in Fig. 1. At the bottom
of this structure are the PHEV agents, which represent the
PHEVs at the local domestic level. At the top of this structure
is the auctioneer agent, which represents the market operator
who buys electricity for its PHEVs at an energy market. The
goal of each type of agent is [12]:

o PHEV agent:
Charge the battery before departure time, while respect-
ing local power limitations (e.g. maximum power of a
household connection) and provide information on its
flexibility to the auctioneer agent.

« Auctioneer agent:
Charge PHEV fleet to minimize costs for energy supply
(depending on production units managed by the energy
supplier, prices at the wholesale electricity market ...)
while respecting global constraints (e.g. power limits).

The charging algorithm consists of three steps (Fig. 1). In
the first step, local PHEV constraints are aggregated towards
the auctioneer agent. In the second step, the auctioneer agent
uses the aggregated constraints to minimize energy supply
costs. In the third step, a market-based incentive signal is
propagated from the auctioneer agent towards the PHEV
agents. The three steps are periodically repeated to cope
with dynamics (e.g. arriving and departing PHEVs, changing
electricity costs etc.).

B. Step 1: PHEV constraints aggregation

In step 1, the PHEV agents send their charging constraints
to the auctioneer agent. These charging constraints consist of
energy constraints and power constraints. Energy constraints
represent the limits wherein charging energy can be shifted
in time. Power constraints represent the limits within which a
PHEV’s charging power can be adjusted.

The individual energy constraints of each PHEV ¢ are
expressed by the energy constraint vectors ‘E™* and ‘E™".
These are visualized in Fig. 2a. The area in this graph contains
all charging paths a PHEV can follow to achieve its required
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Fig. 2. A single energy constraints graph for an individual PHEV (a) and
aggregated for an auctioneer agent (b). E™" and E™®* are the energy limits
while E; is an optimal path satisfying the constraints for the whole fleet.
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Fig. 3. Power constraints and corner priority p, for a single PHEV (a).

The equilibrium priority pequi corresponds to charging power P*. Aggregated
power constraints, such as for the auctioneer agent, are shown in (b).

battery level Eq ; "E™" is the path of a PHEV i if it were to
start charging immediately at maximum power and then idle
until departure t4ep, While “E™N js for the case when charging
is postponed as long as possible.

To represent the battery constraints of an entire PHEV fleet,
the individual constraints are aggregated into collective battery
constraints E™ and E™", shown in Fig. 2b:
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The power constraints of each PHEV i are expressed by
a demand vector ‘P%™ This vector expresses a vehicle’s
desire to charge. For every possible priority p, an agent will
determine its charging power, from low to high priorities. This
is similar to a bid as used in Walrasian auctions.

One straightforward way of constructing the demand vector
is by using a heuristic called the corner priority p, to deter-
mine the slope of a linear function, as depicted in Fig. 3a and
equation (2):

meax .
i Pmax* 1f0§p§p7"a
fa(p) = pr 2
0 if p > p,

A higher p, value will give rise to a ’flatter’ curve, indicating
the willingness to consume at higher priorities. For conve-
nience, p is kept within [0,1[. Next, *f; is sampled at 100
points to obtain “P*™ and interpolated when needed:

P (p)={'fa(p) Vpe{0, 0.1, 0.2,... 0.99}} (3)
Different parameters can determine the willingness-to-pay of
a PHEV and thus its demand vector, including:

e Maximum charge power Py, limited by the vehicles’
power electronics or the local grid connection.

o Time until departure Atgep.
o Required energy AFE needed by time 4.

In the work of [12], p, is directly combined from these
parameters as in (4),

~AFE

 Atgep Prax

with Atgep, in hours, P,y in Watt and AE in Watt hour.

In this paper we are using the linear function of (5) to
determine the corner priority p, and the agent demand curves.

1 1 1
pr= g5 = 5 Al + S AE (5)
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Using function (4) will emphasize charging close to tg), as
pr then behaves asymptotically when 4., approaches zero. Of
course, different heuristics or a heterogeneous mix could be
used as well. In case the device can only be switched on/off
or consume at discrete rates, the demand vector can be a step
or stair-shaped function.

As shown in previous work [13], the choice of demand
function has an influence on the behaviour of the system, but
this falls outside the scope of this work.

In case of insufficient time to get the needed charge, the
demand vector is replaced by a flat curve at the maximum
allowed power Py.x, meaning that the agent will charge no
matter the priority. This emergency charging case is explained
further in section V-A2.

C. Step 2: Optimization of the PHEV fleet

In step 2, the auctioneer agent determines a timeslot based
charging plan for the entire PHEV fleet. This charging plan
is based on a cost model C, which represents the costs for
charging PHEVs. Examples of costs are distribution costs, gen-
eration costs and energy bought at energy markets (e.g. at the
day-ahead market). The cost model and the aggregated energy
constraints constitute the complete optimization problem:

mPin c®P) (6)

subject to:
Pt S Ptlimit
E;;nin S Et S E;nax
Et+1 == Et + PtAt

vtE{l,...,tend},
vtE{l,...,tend},
VtE{l,...,tend—l}.

where t.,q is the departure time of the PHEV which departs
last, and P/™ the power limits of the cluster. The latter can
be built from the devices’ energy constraints graph and aggre-
gated into a cluster-wide P/™. Dependent on the shape of the
objective function C, different solution methods can be used
to solve this problem (e.g. linear or quadratic programming).
The result of solving this optimization problem is the control



vector Py, which defines control values from time 1 (¢,0w)
until ¢.,q for the entire PHEV fleet:

Pctrl = {Pla P27 P3 Ptend} (7)

D. Step 3: Real-time control

In step 3, the auctioneer agent divides P, from (7) between
the individual PHEVs of the fleet. For this purpose, the
aggregated power constraints (Fig. 3b) are used to translate
Py to an equilibrium priority pequi.

Once the equilibrium priority is known, this priority value
is sent as a control signal to all PHEV agents. Consecutively,
each PHEV agent ¢ will locally match this priority in its
personal demand vector ipdem (Fig.3a, function P in (8)) and
start consuming at power p

P =P (iPdemvpequi) (3)

The result of these actions is a dispatch of P; between all
PHEV agents.

The main advantage of this three-step approach is its
scalibility: the computation of a charging plan for the EV fleet
is independent of the total fleet size. Furthermore, the quality
of solutions in terms of cost minimization are comparable to
fully centralized solutions [12].

IV. REAL-TIME MARKET-BASED CONTROL

As explained in section II, the above and existing algorithms
make use of timeslots. Inherently, they do not consider changes
that occur within a timeslot, such as arriving or departing
vehicles or external events, which can be problematic in a
direct field implementation. Decreasing the timeslot interval
length to the order of seconds or minutes addresses this
problem only partially, as it directly affects scalibility; agent
communication and required computational power would rise
quickly and prevent the use of large clusters of agents.

Therefore, to bring the three-step approach from section III
to the real-time domain but retain its scalibility, we introduce
the following additions:

1) Dual coordination by splitting the auctioneer agent into

a real-time fleet manager and market operator agent.

2) Asynchronous updating of constraints.

3) Caching of constraints and equilibrium priorities.

4) Energy constraints graphs alignment and startpoint esti-

mation.
In the next subsections these additions are discussed and then
we compare the results with the timeslot based algorithm.

A. Dual coordination

The dual coordination approach separates the synchronously
operating auctioneer agent of section III into a real-time part,
the fleet manager, and a periodically moving part, the mar-
ket operator. Additionally, to improve scalibility, concentrator
agents are inserted. The resulting agent hierarchy is illustrated
in Fig. 4.

The market operator is responsible for global optimization
of the cluster. Because of its connection to the energy markets,

t
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Fig. 4. Dual coordination agent structure for PHEV agents

the market operator will typically act on a periodic basis, for
example every hour or 15 minutes. When it has determined
a new strategy or optimum, it will pass a power or energy
setpoint to the fleet manager.

The fleet manager is in the real-time domain and receives
the result of the optimization by the market operator as a
schedule containing power setpoints. Using the demand vector,
it will attempt to steer the global consumption of the fleet
in real-time towards this schedule by varying the equilibrium
priority Pequi-

Concentrator agents aggregate the charging constraints from
an underlying cluster of agents and appear as a single entity
to the agent above it. They also perform the necessary agent-
housekeeping by keeping track of arriving and departing
PHEVs. By aggregating constraints data, concentrators im-
proves the scalibility of the system. If necessary, multiple
levels of concentrator agents could be used.

B. Asynchronous updating

All interaction in the real-time part of the agent structure is
event-driven. Possible events are:
o PHEV arrival or departure: a vehicle is plugged in or out
and the associated agent notifies the local concentrator.
o Modified constraints data: the agent (or the driver him-
self) changes the charging schedule and the demand
vector “P%™ is updated to reflect these changes.
e New equilibrium priority pequi: the fleet manager or
concentrator agents distribute new priority data.
As opposed to a timeslot based control system, interaction
between agents happens asynchronously. For demand vector
data that passes from one agent to a higher level in the tree,
this could mean that replies carrying the latest peq,; are not
necessarily related to the last submitted demand of that agent.
Device agents would then apply this peqy on a demand vector
that has not yet been incorporated in the fleet manager’s
optimization. Caching will further aggravate this effect. To
keep demand vectors and priorities partially ordered, Lamport
timestamps [14] are applied on their messages. By looking at
the timestamps, agents can determine what previously submit-
ted demand vector to use with a received pequi to determine
Pt

C. Caching

When an event occurs at the PHEVs, a constraints update
is sent upwards, a new equilibrium determined and then
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propagated downwards again. To avoid a continuous flood of
these updates in case of large fleets, an intelligent caching
scheme is implemented. Updates are sent when changes are
deemed to have sufficient impact on either the demand vectors
or the equilibrium priority.

1) Demand vectors: At the level of PHEV agents, the
periodically rebuilt demand vector iPSﬁL“ is compared with the
last one sent to the local concentrator, ‘P{™. Their difference
is quantified by determining the bounded discrete Fréchet
distance between two demand vectors PS™(p) and P3™(p)
as shown in (9).

3p (PE™ (p), PE™(p)) = ®)
min { e 4 [PE™ (0(0). P4 (a(0)]

af0,1] | te[0,1]
BlO,1[

with d the Euclidian distance function and «(t),8(t) arbi-
trary discrete nondecreasing functions such that «(t), 5(t) €
{0.1, 0.2,...0.99} V¢t € [0,1]. 6p will then give the shortest
coupling distance between the two demand vectors, which is
a measure of how much P{™ and P$™ resemble each other.
If a(t) = B(t), a simple maximum distance remains. The
demand vector caching process is shown in Fig. 5.

Demand vector caching is also applied at the concentrator
agents to decide if an aggregated vector should be sent
upwards. Logically, the maximum allowed deviation should
be larger than for an individual agent.

2) Equilibrium priorities: Upon receiving a new equilib-
rium priority from the fleet manager or another concentrator
agent, a decision needs to be made whether to send this
information immediately to agents lower in the tree or hold
on to it for longer. During this process, illustrated in Fig. 6,
impact numbers « are calculated according to (10). They are
the difference between (estimated) power P (Pdem,p) when
the old equilibrium priority peyq is kept and when the new one
Pnew Would be applied on agent a;’s last submitted demand

vector “P{™ instead.

k(ai) = [PCPRY, poia) = POPRT oew)|  (10)
For every newly received pequi, a distinction is made between
impact of the concentrator as a whole, > x(a;), and individ-
ually per PHEV agent managed by that concentrator, k(a;).
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Fig. 6. Real-time concentrator agent equilibrium priority caching strategy
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Fig. 7. Concentrator energy constraints estimation

D. Energy constraints graphs

The energy constraints introduced by [12] are tailored to
the use of timeslots; the starting time fq, 1S always the same
for every agent that submits constraints. In the asynchronous
situation, this does not hold; at the time of aggregation ¢,oy, the
energy constraints from the PHEVs stored at the concentrator
differ in the time they were built (Fig. 7). To avoid contacting
every device agent again when aggregating, some adjustments
are made:

1) Sampling interval: If a 15 min. sampling interval would
be used as in [12], the maximum error arising due the time
discretization at a consumption of 3.3 kW amounts to 413 Wh
(as time is rounded to the nearest sampling interval multiple,
but charge power is not allowed to exceed the charger’s
maximum of 3.3 kW). By reducing it to 180 secs, the error
is reduced to 83 Wh. The increase in amount of samples can
be offset by parameterizing the graph and resample it upon
aggregation, or by using non-uniform sample intervals.

2) Alignment & energy estimation: During aggregation, the
devices’ individual energy constraints need to be re-aligned
such that all of them start at the current time ft,oy. AS a
consequence, the aggregated energy constraints graph can
become “open-ended” on both sides (meaning that Ey,, and
Eax do not coincide at the graph limits t,0y and thoiz) as
illustrated by Fig. 7.

If the starting point of one or more devices’ constraints



curve lies in the past (e.g. fgar), it means that by t,o the
concentrator’s devices will have accumulated some energy
Eeonsumed (11). Neglecting Eeopsumed 1€ads to an energy under-
estimation during optimizations by the market operator, in turn
leading to overestimated power setpoints for the fleet operator.

As the concentrator holds the constraints and priorities
associated with every agent 4, it is possible to estimate
Econsumed,i by integrating P (“Pjery, Prastt)» Where "Pier is the
last submitted demand vector at time ¢ of agent ¢ for which
a corresponding priority ppe was sent back. This is shown
in equation (12). Deviations can occur when there is a delay
between the concentrator sending priorities and the devices
acting upon it.

E™ [tnow] > Econsumed > Emin [tnow] (11)
and Econsumed = Z Econsumed,i
trmw
Econsumed,i = Z P(lpﬂfsr:}taplast,t) At (12)

t=Tstart

Eventually the aggregated constraints curve at oy can be cor-
rected by adding Zz (EconsumedJ — tgmm [tnow}) to {EMin [tnow]
of the aggregated curve, and restoring monotonicity if neces-
sary.

V. EVALUATION

The real-time market-based coordination system explained
in sections III and IV has been implemented in a combined
MATLAB/Java-based simulation. All event-driven agent logic
is written in Java, while the market-level optimisation algo-
rithms are implemented in MATLAB.

A. Scenario and objectives

Before we discuss the results, the scenario settings &
objectives for the market operator and the PHEV agents are
explained.

1) Market operator: As depicted in Fig. 2b, the mar-
ket operator defines a global power objective by esentially
determining a valid optimal path F; within the aggregated
energy constraints graph and is free to use any objective for
this. Because energy markets are typically based on timeslots
during which prices apply, it makes sense for the objective
function to do as well.

When minimizing charging costs according to a Time-Of-
Use scheme is the sole business case, a purely linear costmodel
is sufficient, in which case the market operator solves an LP
problem of the form:

thoriz thoriz
min E mtEt+ E O[|Pt_1 7Pf‘
PE

t=0 t=1

with E; the energy consumed by the fleet, m; the energy
price during time slot ¢ and using the constraints as in (6).
The power limitation vector P'™ is derived from aggregated
information of the individual agents and/or from overload-
avoiding constraints that apply (e.g. transformer or parking
grid connection in case all vehicles are physically in the same

13)
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Fig. 8. PHEV emergency charging demand vector (a) and energy constraints
graph (b).
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Fig. 9. Number of plugged-in and chargeable vehicles during simulation.

part of the grid). The regularisation term «|P;; — P;| favors
smooth solutions.

Other valid market operator goals include the minimisation
of the variance between a portfolio of renewable energy
sources (wind, solar...) and a number of fixed and controllable
devices (households, PHEVs...) or limiting peak load. Stochas-
tic information or learning algorithms could be incorporated
as well, but the optimization aspect itself is outside the scope
of this work.

2) PHEYV device agents: PHEVs have individual objectives:
charging in time and/or at low cost by providing bid data. The
maximum charging power of a PHEV is chosen at 3.3 kW,
corresponding to a connection through a regular 230V wall
socket and the usable battery content equals 12 kWh.

The vehicles’ driving behaviour is simulated using realistic
profiles [15], in which measured driving data was used to
build synthetic availability profiles. Battery state upon arrival
is calculated assuming an average trip speed of 42km/h and
driving efficiency of 4 km/kWh (charging energy). Drivers
plug in their cars at home (making most of the vehicles
available between 19h-5h, Fig. 9) and give information on
their next departure time Zgep. A desired charge level is not
supplied so charge-to-full is assumed. As home-charging is
limited to 3.3 kW this might not always be feasible. In such
a case, when there is not or only just enough time to obtain a
full charge, the vehicle agent switches to emergency charging
mode, independent from the fleet manager. The ‘E™" and
‘E™ curves overlap and from then on charging proceeds at
the maximum allowed power P,c. Obviously, such a vehicle
has no flexibility and can/will not react to peqy; anymore. Fig. 8
illustrates this case.

The simulations were also performed using PHEV param-
eters of 6.6kW power/20kWh battery, 2kW/12kWh and a
heterogeneous mix of the three types, but apart from a different
power profile the same conclusions were obtained.



B. Results

The goal of the evaluations is to show that the original
algorithm from [12] can be applied in a continuous realistic
setting with the additions from section IV. A comparison
with a timeslot based implementation is made to verify the
performance.

1) General behaviour: A first setting consists of 1,000
PHEVs, distributed over 4 concentrator agents. The optimiza-
tion at the market operator (13) employs day-ahead energy
price information from the BELPEX [16], using a 24-hour
horizon. Fig. 10 shows the power profiles and equilibrium
priorities for both the 15 min. timeslot based implementation
and its real-time counterpart. The simulation starts on the 21th
of March and runs for 4 consecutive days. Day one is left out
due to transient effects of empty batteries at the start of the
simulation. A detailed view is shown in Fig. 11. On the graph
for the timeslot based system it is visible that the equilibrium
priority and measured power consumption of the charging
PHEVs vary at discrete times. The measured power however
always deviates downwards from the market operator setpoint
during the timeslots because vehicles achieve a full battery
and/or leave within the length of a timeslot. This is expected
as there is no way to react within the timeslots themselves.
Similarily, vehicles arriving within a timeslot have to wait.

The real-time implementation uses the same discretized
optimization in the market operator but the fleet manager
adjusts pequi during the timeslots as it reacts on incoming
messages. Therefore abovementioned deviations are avoided
provided there is still flexibility in the cluster, i.e. when 0% <
Dequi < 99%. If this is not the case, the deviation is still known
to the fleet manager, which is visible as the difference between
’Fleet manager setpoint’ and "Market operator setpoint’ in
Fig. 10.

Another effect occurs in the real-time implementation: be-
cause of the caching from section IV-C, peq; differs slightly
throughout the hierarchical agent structure. The decision to
hold newer peq; from certain devices is made by the con-
centrator agents, leading to a discrepancy between what the
fleet manager believes is consumed by the devices and the
real measured power. The amount of messages (through the
aggressiveness of the caching mechanism) can therefore be
traded against desired accuracy of the fleet manager. We
previously showed this possibility in [13].

2) Comparison: In this part of the evaluation, the real time
implementation is compared to the timeslots version regarding
the quality of the solution. First, total charging costs are
assessed by repeating the simulation setting from section V-B1
with a randomized set of 1,000 driving profiles (out of a set of
250,000 synthetic profiles [15]), and for 4 random consecutive
days of the year. For the last 3 days of the simulation, the
amount of device agent messages and the total charging cost
is taken. Fig. 12 shows the distribution of these metrics for the
simulations, and Fig. 13 shows the cost difference between the
two approaches on a per simulation basis.

Table I shows a summary of the metrics for the whole set
of randomized simulations. Despite the caching mechanism
non-idealities, the charging costs have been reduced slightly
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on a per simulation basis (1,000 PHEVs, 3 random consecutive days, 500
simulations).

(by 3%) with respect to the timeslot implementation. Simul-
taneously, the amount of messages exchanged with device
agents was about 65% less. At the bottom of the previous
figure, Fig. 10, a communication load graph has been included
to show the distribution of messages during simulation. It is
visible that the messages in case of the real-time coordination
are centered around the times where energy prices are low.
This makes sense as this is where the fleet manager sends
new priorities to the cluster, illustrating that messaging now
mainly occurs when it will have an impact.

In case of a communication failure at or with one of the
concentrator agents, underlying PHEVs will continue charging
using the last equilibrium priority data known to them. Device
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TABLE 1
RANDOMIZED SCENARIOS RESULTS
Averaged metric Timeslots  Real-time Improvement
Charging cost €1,206.3 €1,170.6 2.96%
Nb. device messages RX 96,956.0 33,237.5 65.72%
Nb. device messages TX  103,582.7 37,352.3 63.94%

agents will still activate emergency charging when needed.

C. Applicability to other scenarios

The dual coordination approach’s responsiveness allows to
quickly react on external changes and thus offer some specific
quick-response services such as shedding or increasing load.
For example in the Netherlands, the imbalance prices are
updated every minute, but the imbalance cost consolidation
is done every 15 minutes [17]. Therefore the fleet manager
can steer the power consumption of the cluster so that the
quarterly imbalance cost is as low as possible. A retailer or
Balancing Responsible Party (BRP) is able do the same within
its portfolio.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we presented a coordination mechanism which
controls EVs on two different operation levels. The first level,
“market operation”, optimizes EV charging for discrete market
time slots. Herein, we use an existing three-step algorithm.
The second level, “real-time operation”, translates this sched-
ule into event-based control actions. In the latter, caching
techniques are used to reduce the number of messages. This
approach produces less overhead and results in similar or
better performance than a comparable timeslot-only approach.

All results so far have focused on the use of (PH)EVs
as devices under control, having a relatively high degree of
flexibility at the household DSM level. It is however also
possible to apply the three-step approach to other types of
consumers or generators [18]. As long as the flexibility of
the underlying process can be translated into the power and
energy constraints from section III, they can be integrated in
the control system. Knowledge about the latter process or the
intricacies of the demand vector function stays local and is
therefore hidden from the upper control levels, allowing a
’standardized’ constraints interface to be used. The energy
constraints graph estimation from section IV-D2 will likely
need to be adapted though.

The dual coordination approach can be expanded further;
for example, the fleet manager could contain a feed-back
mechanism to compensate for the differences that occur due
to the caching. This would require measurements about actual
consumption by the PHEVs.

Future & ongoing work focuses on situations during which
the state of the local distribution grid causes additional com-
plications. For example, to protect the grid, the PHEV charger
can implement droop control, capping charge power when the
voltage sags too much. During these times, constraints at the
real-time level take priority over the market level operation.
Because of the event-driven approach, the updated demand

vectors (PHEV or aggregated) can be quickly responded to
by the fleet manager and an updated equilibrium priority will
ensure that other agents make up for the loss in planned con-
sumption. Similarily, in case multiple competing aggregators
each control a number PHEVs within the same distribution
grid, quick interaction between distribution grid dynamics
(transformer limits, voltage profiles, droop control ...) and the
market operator levels of both aggregators would be beneficial.
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