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Abstract 

In clonal systems, interpreting driver genes in terms of molecular networks helps 

understanding how these drivers elicit an adaptive phenotype. Obtaining such a network-

based understanding depends on the correct identification of driver genes. In clonal 

systems, independent evolved lines can acquire a similar adaptive phenotype by affecting 

the same molecular pathways, a phenomenon referred to as parallelism at the molecular 

pathway level. This implies that successful driver identification depends on interpreting 

mutated genes in terms of molecular networks. Driver identification and obtaining a 

network-based understanding of the adaptive phenotype are thus confounded problems 

that ideally should be solved simultaneously. In this study, a network-based eQTL method 

is presented that solves both the driver identification and the network-based interpretation 

problem. As input the method uses coupled genotype-expression phenotype data (eQTL 

data) of independently evolved lines with similar adaptive phenotypes and an organism-

specific genome-wide interaction network. The search for mutational consistency at 

pathway level is defined as a subnetwork inference problem, which consists of inferring a 

subnetwork from the genome-wide interaction network that best connects the genes 

containing mutations to differentially expressed genes. Based on their connectivity with 

the differentially expressed genes, mutated genes are prioritized as driver genes. Based 

on semi-synthetic data and two publicly available data sets, we illustrate the potential of 

the network-based eQTL method to prioritize driver genes and to gain insights in the 

molecular mechanisms underlying an adaptive phenotype. 

 

Key words: Experimental evolution, biological networks, gene prioritization, coexisting 

ecotypes, drug resistance 
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Introduction 

Because of their short generation times, large population sizes and quasi clonal behavior, 

experimental evolution of micro-organisms offers great potential for trait selection and testing 

evolutionary theory (Dettman, et al. 2012; Kawecki, et al. 2012). Evolution experiments start from 

a single clone propagated for many generations under a predefined conditional set up, defined as 

the selection regime. As the organisms propagate they gradually accumulate genetic variation 

(SNP’s, INDELs, etc.). Some of this variation will cause a clonal fitness increase and a 

concomitant selective sweep, which ultimately increases population fitness. The acquired genetic 

variation can be identified in the evolved lines of the population through sequencing. Genes 

containing mutations that are fixed in the population, that reach a high frequency in the population, 

or of which the origin coincides with an increase in fitness (Herron and Doebeli 2013; Hong and 

Gresham 2014; Kvitek and Sherlock 2013) are pinpointed as likely drivers, where a driver in this 

context is defined as any gene carrying adaptive mutations, that in isolation or in combination with 

other drivers can elict a fitness increase and concomittant clonal expansion. 

In most evolution studies however, a mechanistic understanding of how the selected driver 

mutations elicit the adaptive phenotype is still lacking. Such a mechanistic interpretation depends 

on correctly identifying and interpreting driver genes in terms of the genome-wide interaction 

network of the organism of interest in order to find the molecular pathways that drive the observed 

adaptive phenotype. The identification of the driver genes is in itself not trivial because during a 

selection sweep, passenger mutations, i.e. mutations that do not contribute to the phenotype, are 

likely to hitchhike to fixation along with driver mutations (Barrick and Lenski 2013). Furthermore, 

because under strong selection pressures hyper mutators frequently arise (Foster 2007; Wielgoss, 

et al. 2013), the ratio of driver genes to passenger genes can become low, further complicating 

the identification of driver genes.  
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To identify driver genes, one can exploit parallelism of mutations at the gene/nucleotide 

level. Genes observed to be recurrently mutated in independently evolved lines with a similar 

phenotype are more likely to be drivers (Hong and Gresham 2014; Tenaillon, et al. 2012). 

However, independently evolved lines can also acquire similar adaptive phenotypes by mutations 

in different genes that affect the same molecular pathways (Hong and Gresham 2014; Kvitek and 

Sherlock 2013; Tenaillon, et al. 2012), rather than by sharing exactly the same mutations or 

mutated genes. Identifying driver genes underlying an observed phenotype thus requires 

identifying mutational parallelism between independently evolved lines at the molecular pathway 

level (Ding, et al. 2014; Lang and Desai 2014; Lin, et al. 2007; Wood, et al. 2007). In other words, 

driver gene identification and acquiring a network-based understanding of the adaptive phenotype 

are confounded problems that have to be solved simultaneously. 

In this study, we illustrate how a network-based method in combination with coupled 

genotype-expression phenotype data (eQTL data) of parallel evolved lines can aid in 

simultaneously prioritizing driver genes and providing a network-based interpretation of the 

molecular mechanisms underlying the evolved adaptive traits. To this purpose the network-based 

eQTL method uses an organism-specific genome-wide interaction network, compiled from publicly 

available interactomics data (Cloots and Marchal 2011; Sánchez-Rodríguez, et al. 2013) to drive 

the search for mutational consistency at the pathway level. 

By generating a semi-synthetic experimental evolution benchmark, the ability of the 

method to prioritize driver genes is demonstrated. To illustrate the performance of both driver gene 

prioritization and network-based interpretation of the data in a real setting, the method is applied 

to eQTL data obtained from two previously described evolution experiments in Escherichia coli. 

The first data set aims at identifying the adaptive pathways that gave rise to improved Amikacin 

resistance in four independently evolved lines (Suzuki, et al. 2014). The second data set focuses 

on unveiling the molecular interactions between two distinct ecotypes that evolved from a common 
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ancestor in the long term evolution experiment of Lenski et al. (Plucain, et al. 2014). For both data 

sets the method prioritizes driver genes that contribute to the adaptive phenotypes and unveils 

their molecular modes of action. 

Materials and Methods 

Network-based eQTL method 

The eQTL analysis method is based on the probabilistic logical querying language ProbLog (De 

Raedt, et al. 2007). To simultaneously prioritize driver genes and unveil adaptive molecular 

pathways, elicited by these driver mutations, the driver gene identification problem is reformulated 

as a decision theoretic subnetwork inference problem (Van den Broeck, et al. 2010) over multiple 

probabilistic networks 𝑄𝑖, derived from the genome-wide interaction network 𝐺. The method 

consists of three steps (Figure 1): 

Construction of probabilistic networks 

For each of the parallel evolved lines 𝑖 of an evolution experiment, the genome-wide directed 

interaction network 𝐺 is converted into a probabilistic network 𝑄𝑖 by assigning to each edge a 

weight that reflects the probability the edge is playing a role under the assessed condition, given 

the differential expression data as depicted in figure 1-A. To this end, per node the probability is 

calculated that an expression value at least as extreme as the one associated with that node would 

be observed by chance, given the null hypothesis that the expression value of the gene which 

corresponds to the node is not significantly differentially expressed, is true. Calculation is 

performed using a two-tailed p-test assuming that the log2 fold changes follow a normal 

distribution 𝑁(𝜇, 𝜎) (Feng, et al. 2012; Pawitan, et al. 2005). By standardizing this distribution to 

𝑁(0,1) this probability can be calculated for any differential expression value 𝐷𝑔𝑒𝑛𝑒 using Formula 

1 in which 𝑍𝑔𝑒𝑛𝑒 corresponds to the standard score associated with 𝐷𝑔𝑒𝑛𝑒. 
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𝑃𝑔𝑒𝑛𝑒 = {
𝑃(𝑋 > 𝑍𝑔𝑒𝑛𝑒) + 𝑃(𝑋 < −𝑍𝑔𝑒𝑛𝑒)𝑖𝑓 𝑍𝑔𝑒𝑛𝑒 > 0

𝑃(𝑋 < 𝑍𝑔𝑒𝑛𝑒) + 𝑃(𝑋 > −𝑍𝑔𝑒𝑛𝑒)𝑖𝑓 𝑍𝑔𝑒𝑛𝑒 < 0
 𝐺𝑖𝑣𝑒𝑛 𝑁(0,1)    (Formula 1) 

As in the network-based eQTL method the edges, not the nodes, are weighted, the value 𝑃𝑔𝑒𝑛𝑒 is 

propagated to the edges that terminate in it. A high value for the probability that a specific edge is 

involved in a specific experimental condition is assigned to edges that terminate in highly 

differentially expressed genes. Therefore, 1-𝑃𝑒𝑛𝑑 𝑔𝑒𝑛𝑒 will be assigned to all edges. Using the 

cumulative normal distribution of 𝑁(𝜇, 𝜎) which is written as 𝛷(𝜇, 𝜎),  this can be simplified as 

shown in Formula 2. 

𝑃𝑒𝑑𝑔𝑒  = (|0.5 −  𝛷(𝜇,𝜎)(𝐷𝑒𝑛𝑑 𝑔𝑒𝑛𝑒)|) ∗  2   (Formula 2) 

Where 𝐷𝑒𝑛𝑑 𝑔𝑒𝑛𝑒 is the differential expression data of the end gene of the interaction. If no 

differential expression data is available for 𝐷𝑒𝑛𝑑 𝑔𝑒𝑛𝑒, 𝑃𝑒𝑑𝑔𝑒  is set to 0.5. 

Pathfinding in probabilistic networks 

Each probabilistic network 𝑄𝑖 allows for determining the probability of connectedness between a 

gene 𝐶𝑖,𝑗, from a set of genes 𝐶𝑖, and a gene set 𝐴𝑖, defined as 𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗, 𝐴𝑖)|𝑄𝑖). This probability 

of connectedness expresses how likely it is that there exists a path that connects the gene 𝐶𝑖,𝑗 to 

any gene in the gene set 𝐴𝑖, in the probabilistic network 𝑄𝑖. A path between two nodes is a 

sequence of consecutive edges from the genome-wide interaction network that connects these 

two nodes and for which all edges are directed in the same direction. The probability of such a 

path is simply the product of the probabilities of the edges it contains. In the proposed eQTL setting 

each gene 𝐶𝑖,𝑗 is defined as significantly differentially expressed in evolved line 𝑖 and gene set 𝐴𝑖 

is the set of mutated genes obtained from evolved line 𝑖. A path connects a significantly 

differentially expressed gene to genes mutated in the same evolved line. The rationale behind this 

is that the significantly differentially expressed genes are effects of mutations and thus connect to 

the ‘causal’ mutations through the probabilistic network. The probability of connectedness 
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𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗, 𝐴𝑖)|𝑄𝑖) represents the probability with which the differential expression of 𝐶𝑖,𝑗 can be 

induced by the set of mutations, given the probabilistic interaction network 𝑄𝑖 and quantifies which 

mutations are most likely to cause the differential expression of 𝐶𝑖,𝑗. 

Inference of the optimal subnetwork by combining the data from all evolved lines 

Identifying driver mutations from a set of independent end points with the same phenotype 

corresponds to inferring a single subnetwork 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 over all independent end points that best 

connects the significantly differentially expressed genes 𝐶𝑖,𝑗 and the set of mutations 𝐴𝑖 for all end 

points together as depicted in figure 1-C.  A subnetwork 𝐾 of a network 𝐺 is defined as a subset 

of the edges in 𝐺 together with the nodes occurring in the selected edges. Note that a subnetwork 

in this context can thus consist of any number of disconnected parts of the original network 𝐺. 

For each subnetwork 𝐾 from 𝐺 the probability of connectedness changes to 

𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗, 𝐴𝑖)| 𝑄𝑖 , 𝐾) as paths that are valid in 𝑄𝑖 are not necessarily valid in a subnetwork 𝐾. 

Therefore, the probability of connectedness changes to 𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗, 𝐴𝑖)| 𝑄𝑖, 𝐾) when working with 

subnetworks 𝐾, denoting that the edges along the path have to be present in both 𝑄𝑖 and 𝐾.  Each 

subnetwork 𝐾 should be scored based on the sum of probabilities that there exists a path between 

each significantly differentially expressed gene 𝐶𝑖,𝑗 in 𝐶𝑖 and the list of mutated genes 𝐴𝑖, for each 

independently evolved line 𝑖, out of a total of 𝑛 independently evolved lines as described in 

Formula 3. Between different end points it is expected that the same adaptive pathways are 

triggered (parallel evolution). Also, within every end point separately, multiple paths are expected 

to be found in regions with many significantly differentially expressed genes that are likely to be 

important for the phenotype.  Therefore, paths between driver genes selected from different end 

points and their respective sets of differentially expressed genes should overlap in the optimal 

subnetwork. By restricting the size of the network through a cost based on the number of 

edges |𝐾| in the subnetwork the method will preferentially select these overlapping paths. This 
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edge cost can be modulated using the cost factor 𝑥𝑒. 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is defined as the subnetwork that 

has the maximum possible value of the score function 𝑆(𝐾) (Formula 3). 

𝑆(𝐾) = ∑ (∑ (𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗 , 𝐴𝑖)|𝑄𝑖 , 𝐾))𝑙
𝑗 ) 𝑛

𝑖 −  |𝐾| ∗  𝑥𝑒   (Formula 3) 

Computing the probability that there exists a path between two nodes in a probabilistic network is 

known as the two-terminal reliability problem, which is NP-hard. This explains why there is no 

known efficient exact inference algorithm and why we employ an approximation algorithm to 

compute 𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗, 𝐴𝑖)|𝑄𝑖). This probability is approximated by using only the N most likely paths 

of maximal length 𝑙 between the differentially expressed gene 𝐶𝑖,𝑗 and any mutated gene of 𝐴𝑖  

(De Maeyer, et al. 2013; De Raedt, et al. 2007). The resulting paths (for all 𝐶𝑖) are then represented 

as a Boolean formula (as in probabilistic logic programming languages (De Raedt, et al. 2007)): 

each path corresponds to a conjunction of the edges that are present in the path, and a set of 

such paths corresponds to the disjunction of the conjunctions corresponding to these paths. This 

formula is then compiled into an equivalent deterministic Decomposable Negation Normal Form 

(d-DNNF) using knowledge compilation techniques (Darwiche and Marquis 2002). The advantage 

of the d-DNNF is that it contains the same information as the original set of paths and that it can 

efficiently be evaluated in polynomial time for each subnetwork 𝐾 (Darwiche and Marquis 2001). 

Selecting such a subnetwork 𝐾 corresponds to setting all edges not in 𝐾 to false when evaluating 

the d-DDNNFs. The optimal subnetwork 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is determined by sampling different subnetworks 

𝐾 from 𝐺 by performing a random-restart hill climbing optimization as outlined in (Van den Broeck, 

et al. 2010). Note that, as 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is a subset of 𝐺, it is possible that 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is not necessarily 

connected. 

Driver gene prioritization 

Because subnetworks obtained using a higher edge are more enriched in driver genes than 

subnetworks obtained using a low edge cost (higher PPV, more stringent conditions) and 
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subnetworks detected at high edge costs are in general contained within the ones retrieved at 

lower edge costs, mutated genes are prioritized based on the highest edge cost for which they 

are still selected (i.e. ranks of mutated genes are based on the most stringent condition under 

which they are still selected). The reason for this is that mutated genes that are detected at the 

highest edge cost (most stringent parameter) represent the most pronounced signals in the data. 

Mutated genes that represent weaker signals (mutations that explain less of the expression data) 

are only retrieved at less stringent edge parameter costs. To this end, for each data set multiple 

optimal subnetworks are inferred using a gradually decreasing edge cost, i.e. a parameter sweep 

over the edge cost. Mutated genes that are retrieved using a high edge cost are strongly 

connected to the expression phenotype and thus receive the lowest (best) rank. Note that this 

prioritization strategy can result in assigning identical ranks to different mutated genes. These 

prioritized mutated genes, together with the inferred subnetworks are visualized by depicting the 

union of all edges and nodes present in the different inferred subnetworks. 

Parameter settings 

To infer subnetworks the maximum length of a path is set to four edges based on both biological 

(Gitter, et al. 2011; Navlakha, et al. 2012) and computational considerations. To approximate the 

probability of connectedness 𝑃(𝑝𝑎𝑡ℎ(𝐶𝑖,𝑗, 𝐴𝑖)|𝑄𝑖 , 𝐾) the 20-best paths were used that connect 

each differentially expressed gene 𝐶𝑖,𝑗 to the set of mutated genes 𝐴𝑖. The edge cost parameter 

determines the size of the inferred subnetwork and forces the selection of overlapping paths. The 

behavior of the edge cost is characterized on a semi-synthetic data set as indicated in the result 

section. As described in the driver gene prioritization paragraph, a parameter sweep of the edge 

cost was performed in order to prioritize the mutated genes. 

As lower edge costs do not affect ranks of genes prioritized at higher edge costs, the 

choice of the lower bound on the edge cost does not interfere with the results of the highest ranked 

genes. For convenience and visualization purposes we choose a cut-off on the sweep at a cost 
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that corresponds to finding a network of no more than 120 nodes. Conversely, when setting the 

conditions too stringent i.e. very high edge cost, subnetworks can no longer be inferred. Therefore, 

as smallest edge cost we chose the most stringent value at which a subnetwork could be inferred. 

This resulted in a parameter sweep of the edge cost from 1.75 to 0.25 for the AMK resistance data 

set and from 0.975 to 0.025 for the co-existence ecotypes data set. The edge cost sweep was 

performed with a step size of 0.025. Note that the upper limit of the edge cost in the sweep 

corresponds to the value for which no subnetwork was inferred anymore. 

Data sets 

Semi-synthetic benchmarking set 

The semi-synthetic benchmark data set was based on data published by Stincone et al. (publicly 

available from Gene Expression Omnibus under accession number GSE13361) assessing for 27 

E. coli K-12 MG1655 single gene knock-out strains involved in acid resistance, the expression 

profiles relative to a wild type E. coli K-12 MG1655 (Stincone, et al. 2011). Levels of differential 

expression of single gene knock-out strains (27 strains) with respect to the reference were 

obtained from COLOMBOS (Engelen, et al. 2011). As no repeats were available for the different 

experiments, and thus no relevant p-values were available, significantly differentially expressed 

genes were determined as genes having a log2 fold expression change larger than 2. For each 

KO strain, the knocked out gene was considered a ‘known’ driver gene and the measured levels 

of differential expression as the corresponding expression phenotype. Five of those strains, 

namely phoH, cadB, ycaD, spy, yjbJ and grxA, were discarded for benchmarking, because these 

genes only have incoming interactions in the genome-wide interaction network or, in the case of 

yjbJ, are not present in the interaction network. In addition the experiment corresponding to the 

hns KO strain was removed as the COLOMBOS database did not contain the appropriate data. 

For each of the remaining 20 strains the presence of passenger genes was mimicked by randomly 

selecting a nucleotide position in the reference genome and mapping this position to a gene. 
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Passenger mutations had to obey following conditions: 1) randomly selected genes did not belong 

to the set of driver genes and 2) they were connected in the genome-wide interaction network with 

outgoing interactions. The number of passenger mutations assigned to each data set was selected 

from a binomial distribution with n, the total number of selected mutations, being equal to 9 and p, 

the chance of adding a passenger mutation, being equal to 0.5. On average this mimics an 

addition of 5 passenger mutations with a standard deviation of 1.5 for each of the 20 strains in 

each data set. This way the total number of mutated genes in the semi-synthetic data set is of the 

same order of magnitude as the number of passenger mutations per driver mutation observed in 

real data sets (Herron and Doebeli 2013; Suzuki, et al. 2014; Tenaillon, et al. 2012). 

AMK resistance data set 

The genomic data for the four amikacin resistant strains was obtained from Suzuki et al (Suzuki, 

et al. 2014). Raw sequencing data was available at the DDBJ Sequence Read Archive under 

accession number PRJDB2980. Only the Illumina reads were used. The data of the four Amikacin 

resistant lines was mapped to the ancestral E.coli K-12 MDS42 strain using bowtie2 (Langmead 

and Salzberg 2012). SNPs and small INDELs were called using freebayes (Garrison and Marth 

2012) while large INDELs were called using Pindel (Ye, et al. 2009). This resulted in a total of 59 

mutations throughout the four strains. These mutations were mapped to genes as follows: 

mutations within the coding region of a gene were mapped to the encoded gene, mutations in 

intergenic regions were mapped to the closest gene if there was a gene within 250 bp of the 

intergenic region. This resulted in 51 mutated genes. Of these 51 mutated genes, 41 could be 

mapped to the E.coli K-12 MDS42 reference genome. 

Normalized expression data for each of the four Amikacin resistant strains and the 

ancestral line was obtained from GEO under accession code GSE59408. Differentially expressed 

genes were defined as genes having an absolute log2 fold expression change value higher than 

2. This cut off value was selected as no repeated measurements were available and thus no p-
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values could be calculated. Differential expression values were obtained between the Amikacin 

resistant strains and an ancestral line. 

Coexisting ecotypes data set 

Genomic data was obtained from Plucain et al (Plucain, et al. 2014). Mutations present in both 

clones of the same ecotype, but not in clones of the other ecotype, were selected as candidate 

driver mutations that could explain the origin of speciation into the observed coexisting ecotypes. 

It was hereby assumed that potential driver mutations are likely to be ecotype-specific, as 

mutations common to all clones most likely originated before divergence of the ecotypes. This 

resulted in the selection of 87 candidate driver mutations, which could be mapped to 86 potential 

driver genes. The mapping of mutations to genes was taken from Plucain et al. (Plucain, et al. 

2014). Of those 86 genes, 62 genes could be mapped to the E.coli B REL606 genome-wide 

interaction network which were used as input. 

As expression phenotype we used the degree to which gene expression differed between 

respectively the L and S ecotype as determined by microarray experiments performed by Le Gac 

et al. (Le Gac, et al. 2012) (publicly available from GEO under accession number GSE30639). 

Microarrays of 6 biological replicates of the L ecotype, 6 biological replicates of the S ecotype and 

5 biological replicates of the ancestor were available. Using PCA analysis one microarray of the 

S ecotype and one microarray of the ancestor were found to be outliers and were discarded from 

subsequent analyses (Supplementary Fig. 1). The LIMMA package (Smyth 2004) was used to 

identify the degree of differential expression between the ecotypes. As for this data set repeated 

measurements for the expression data were available, significantly differentially expressed genes 

are defined as genes having a p-value of maximum 0.05 and an absolute value of log2 fold change 

of minimal 0.75. The cut off on the log2 fold change was taken lower than in the other data sets 

as here we impose an additional cut off on the p-value. 
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Genome-wide interaction networks 

In this paper a genome-wide interaction network refers to a comprehensive representation of 

current interactomics knowledge on the organism of interest. Networks are represented as graphs 

𝐺(𝑁, 𝐸) in which nodes 𝑁 correspond to genetic entities (genes, proteins or sRNAs) and edges 𝐸 

to the interactions between these entities. Every edge is assigned an edge type, indicating the 

molecular layer to which the interaction represented by the edge belongs (e.g. protein-DNA, 

protein-protein, metabolic or signaling interactions). Depending on its type and provided the proper 

information is available, an edge will be added as a single directed interaction (e.g. protein-DNA 

interactions, sRNA-DNA, kinase-target, etc.) or two directed interactions (protein-protein 

interactions, undirected metabolic interactions, etc.). 

Table 1 comes round here 

An overview of the genome-wide interaction networks used in this study for the three 

different E. coli strains: E.coli K-12 MDS42, E. coli B REL606 and E.coli K-12 MG1655 is given in 

Table 1. To compile these networks metabolic interactions and (de)phosphorylation interactions 

were derived from KEGG (Kanehisa, et al. 2014) version 72.1, protein-DNA, sigma interactions 

and sRNA-DNA interactions from RegulonDB version 8.6 (Salgado, et al. 2013) and high-

confidence physical protein-protein interactions from String (Jensen, et al. 2009) version 10. 

Interactions involving RpoD, the primary sigma factor, were removed from these interaction 

networks as RpoD regulates over half of the genes in the interaction network. 
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Results 

Method overview 

A network-based eQTL method was devised to simultaneously prioritize driver genes and unveil 

molecular pathways involved in the adaptive phenotype. As input the method requires a genome-

wide interaction network of the organism of interest and coupled genotype-expression phenotype 

(eQTL) data for a set of independently evolved lines (strains/populations) with similar phenotypes 

(see Figure 1). The expression phenotype is defined as the level of differential expression of every 

gene between an evolved line and a reference. 

To prioritize driver genes, all genes from the end points carrying allelic variants (hereafter 

referred to as mutated genes) will be assessed for their ability to explain the adaptive expression 

phenotype. Hereto the method infers from the genome-wide interaction network the subnetwork 

that best connects the mutated genes in each of the evolved lines to the set of significantly 

differentially expressed genes in the corresponding evolved lines, assuming that 1) the expression 

phenotype is at least partially a consequence of the driver mutations and 2) the adaptive molecular 

pathways, but not necessarily the driver genes, are to some extent similar, resulting in parallelism 

at the molecular pathway level. 

Figure 1 comes round here 

An overview of the proposed network-based eQTL method is given in Figure 1. The 

method consists of three steps (see Materials and Methods). In a first step (Fig 1 – A) the genome-

wide interaction network is for each evolved line separately converted into a condition-specific 

probabilistic network using the expression data of the corresponding evolved line. These 

condition-specific probabilistic networks are subsequently, in a second step (Fig 1 – B), used to 

find all paths between mutated and significantly differentially expressed genes for each evolved 

line separately. A path is here defined as a sequence of consecutive edges in the genome-wide 
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interaction network. These paths represent possible molecular mechanisms by which mutations 

could induce the observed pattern of differential expression. In the third step (Fig 1 – C) all these 

paths are analyzed together to find the optimal subnetwork, which aims at selecting the 

subnetwork of the genome-wide interaction network that captures the molecular mechanisms that 

drive the adaptive phenotype common to all evolved lines. The optimization enforces the selected 

subnetwork to have two properties.  First, it selects the subnetwork that contains the most likely 

paths that explain the connection between the mutated and differential expressed genes. Second, 

it enforces the network to contain parallel molecular pathways between the different evolved lines. 

The optimal subnetwork thus contains the molecular mechanisms likely to drive adaptation. 

Possible driver mutations which occur in the optimal subnetwork are prioritized based on the 

strength of their connectivity with downstream effects and their involvement in parallel molecular 

pathways (see Materials and Methods). 

Performance of network-based eQTL method on a semi-synthetic data set 

To assess the performance of prioritizing causal mutations by the network-based eQTL method, 

a semi-synthetic benchmark data set was constructed based on a previously published knock-out 

expression profiling experiment (Stincone, et al. 2011). This study assesses differential expression 

profiles between 20 knock-out strains with altered fitness in acidic conditions and the wild type E. 

coli K12 strain. To mimic the eQTL set up, each of the knocked out genes was considered a “driver 

gene” and the presence of passenger genes was simulated by adding a number of randomly 

selected genes to each knock-out data set (see Material and Methods). Differential expression 

profiles between each knock-out strain and the wild type were derived from the original publication 

data (see Materials and Methods). The performance of the network-based eQTL method was 

measured in terms of correctly distinguishing driver from passenger genes. 

Figure 2 comes round here 
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The main parameter of the method is the edge cost, i.e. the cost for selecting an edge in 

the inferred subnetwork (see Materials and Methods). As a lower amount of mutated genes will 

be selected using a higher edge cost, mutated genes can be prioritized by the maximum edge 

cost for which they are selected. This allows assigning a rank for every selected mutated gene 

based on the maximum edge cost. This prioritization is motivated by the fact that mutations which 

are selected at high edge costs need to be better connected to the expression and/or have a 

higher degree of parallelism with other mutations than mutations which are selected at lower edge 

costs. This reasoning was tested by analyzing the semi-synthetic data set for a wide range of edge 

costs (see Materials and Methods for specific parameter settings). As can be seen in figure 2, the 

positive predictive value (PPV) is high for low ranks and decreases for higher ranks, meaning 

mutated genes having low ranks are likely to be driver genes. Furthermore the sensitivity clearly 

increases with increasing rank, leading to a trade-off between selecting few passenger mutations 

and selecting many driver mutations. Even for high ranks, results are still better than a random 

selection of genes as this would correspond to a PPV of 0.2 (on average for every driver gene, 4 

passenger genes were added).  

Unveiling the molecular mechanisms underlying Amikacin resistance 

We applied the eQTL analysis on the eQTL data set from the study of Suzuki et al. (Suzuki, et al. 

2014). In this study four independent E.coli MDS 42 lines were grown in the presence of the 

aminoglycoside antibiotic until all four strains attained increased Amikacin resistance compared 

to the parental strains. 

The network-based eQTL method was applied using the genome-wide interaction network 

of E.coli MDS 42 and the data of the 4 parallel evolved strains (see Materials and Methods). Out 

of 41 mutated genes, we prioritized 12 as potential drivers based on their association with the 

expression data (Table 2). The inferred adaptive pathways containing those prioritized genes are 

visualized in Figure 3.  
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Figure 3 comes round here 

One very plausible driver mutation is fusA, encoding the elongation factor G which is 

consistently carrying a missense mutation in all 4 strains (mutational consistency at gene level). 

Mutations in the fusA ortholog have previously been found to confer aminoglycoside resistance in 

Staphylococcus aureus (Norstrom, et al. 2007). 

Prioritized genes that are also plausible candidate drivers are those that are consistently 

mutated at pathway level. Examples of those are the highly prioritized genes cyoB, nuoG, nuoN 

and nuoC, affected in lines 2 and/or 4 by nonsense or frameshift mutations. These genes are 

members of the electron transport chain which are known to down regulate the protein complexes 

to which they belong (NADH dehydrogenase or terminal oxidase, see Supplementary Fig. 2) 

implying an involvement of the electron transport chain in the adaptive phenotype. cpxA is another 

likely driver as it shows mutational consistency at gene level in two lines (lines 1 and 3).  cpxA is 

a sensor kinase that is known to regulate the cpx response in conjunction with the transcription 

factor cpxR. The mutations in cpxA seem to result in lines 1 and 3 in an activation of the cpx 

response with the targets of cpxR being overexpressed compared to the ancestral strain. This 

increased cpx response has previously been found to have an effect on the electron transfer chain 

(Raivio, et al. 2013).  

These results are consistent with what is described in the original paper of Suzuki et al. 

(Suzuki, et al. 2014) and are in line with the knowledge that Amikacin uptake is dependent on 

proton-motive force (Allison, et al. 2011). Our results confirm these previous findings although the 

different lines seem to be triggered through two different molecular systems, either by directly 

affecting the electron transfer chain or through mutations in cpxA. 

In addition to genes associated with the proton motive force, the method prioritizes 

additional genes, such as rseA explain a large part of the expression phenotype and therefore 

receive a high rank. However, as a mutation in the anti-sigma factor which inhibits rpoE leads to 
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large effects on the expression phenotype and other independently evolved lines do not show 

effects in molecular pathways associated with rseA or rpoE, we would need more data to 

completely rule out the rseA mutation in line 4 being a false positive.  

Unveiling the molecular mechanisms of coexisting ecotypes in glucose-limited minimal 

medium 

A second test case consisted of transcriptomics data and genomics data, described respectively 

by Plucain et al. (Plucain, et al. 2014) and Le Gac et al. (Le Gac, et al. 2012). These data sets 

provide the molecular characterization at generation 6500 of Ara-2, one of the 12 populations that 

were evolved in the E. coli long term evolution experiment in glucose minimal medium (Barrick, et 

al. 2009; Lenski, et al. 1991). By this time the ancestral line had diverged into two distinct, stable 

ecotypes (Le Gac, et al. 2012). Associated studies by Rozen et al. (Rozen and Lenski 2000; 

Rozen, et al. 2009; Rozen, et al. 2005) showed that the L ecotype grows faster on glucose, but 

secretes byproducts that S can exploit, implying a cross-feeding mechanism between the L and 

S ecotypes that can explain their stable coexistence. 

Plucain et al. experimentally identified a minimal set of mutations. Two S-specific mutations 

in respectively arcA and gntR and one in spoT, shared by both the L and S strains that when 

reintroduced together in the ancestral strain were sufficient to mimic the evolved S ecotype in  

invading and stably coexisting with the L ecotype. However, the fitness level of this reconstructed 

S ecotype was lower than the fitness level of the evolved S ecotype (Plucain, et al. 2014), 

suggesting that additional mutations play a role in establishing the phenotype of the evolved S 

ecotype. Both the L and S ecotypes are hyper mutators and have accumulated a large number of 

mutations. Such setting complicates the identification of the correct driver genes. 

By applying the network-based eQTL method on this coupled genomics-transcriptomics 

(eQTL) data (Le Gac, et al. 2012; Plucain, et al. 2014) (see Materials and Methods), we tested to 

what extent we could successfully prioritize the known important driver genes in a data-driven way 
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and could identify missing drivers explaining the adaptive phenotype. The network-based eQTL 

method resulted in prioritizing 11 mutated genes out of 62 identified mutated genes (Table 2, 

Figure 4). 

Figure 4 comes round here 

Given the available data, we could only focus on identifying drivers that originated after the 

divergence between both ecotypes. Using this input data we were able to successfully prioritize 

the driver genes originally identified by Plucain et al., which are arcA and gntR, but not spoT as 

this mutation was present before the divergence of the two ecotypes. The selected subnetwork 

(Figure 4) shows that, consistent with the prioritized mutations in arcA and gntR, the TCA cycle 

and the Entner-Doudoroff pathway are up-regulated in S as compared to L. (Supplementary Fig. 

3 and 4). Figure 4 shows how the S-specific mutation in gntR is responsible for the observed up 

regulation of the Entner-Doudoroff pathway (gntT, gntK, edd, eda). As gntT is a gluconate 

transmembrane transporter protein, the inferred subnetwork provides an explanation of one of the 

previously described mechanisms of the cross-feeding phenotype (Rozen, et al. 2005) in which 

the gluconate released by the L ecotype is metabolized by the S ecotype. The S-specific mutation 

in the arcA gene relates to the S-specific up regulation of the TCA cycle (gltA, fumC, sdhC, sdhD, 

sdhA, sdhB). ArcA was previously found to be repetitively mutated in strains of fast switching 

phenotypes (Luli and Strohl 1990), meaning that the S ecotype could have a fast switching 

phenotype.Besides the already previously prioritized adaptive alleles, the method could prioritize 

several additional mutated genes.  

acs, carrying an S-specific mutation in a cis binding site element known to promote acs 

expression (Beatty, et al. 2003) was prioritized. Consistently, the network shows how acs is highly 

up-regulated in the S-strain as compared to the L strain. acs is an extracellular acetate scavenger 

involved in the conversion of acetate to acetyl coenzyme which implies that, in addition to 

gluconate, acetate might also be (partly) responsible for the cross feeding phenotype between L 
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and S. Acetate consumption has previously been linked to the origin of cross-feeding phenotypes 

in experimental evolution (Barrick and Lenski 2013; Herron and Doebeli 2013). 

Interestingly an intergenic mutation associated to dnaK in the S ecotype appears highly 

prioritized (Table 2). Overexpression of the gene dnaK, a heat shock chaperone, has previously 

been found to mitigate the effect of deleterious mutations in hyper mutators (Maisnier-Patin, et al. 

2005). Although in our network this mutation does not lead to significantly higher expression levels 

of dnaK, the mutation could indirectly interfere with e.g. the stability of the mRNA and as such 

affect protein expression (Burgess 2011), hereby protecting both hyper mutator strains. 

For the S ecotype the molecular mechanism involved in triggering the coexistence 

phenotype are clear, the mechanism of the L ecotype in the coexistence phenotype is, given the 

available data, less obvious. However, the uxuA and uxuB genes are more pronouncedly 

expressed in the L strain than in the S strain. Both genes are involved in catalyzing the reaction 

of D-fructuronate to 2-dehydro-3-deoxy-D-gluconate, which could play an important role in 

gluconate cross-feeding. 

Table 2 comes round here 

Discussion 

Here we present a network-based eQTL method that exploits parallelism between independently 

evolved lines to search for mutational consistency at the molecular pathway level. Because the 

method searches for parallel molecular pathways between the different evolved lines, these 

identified driver mutations are likely to be adaptive. In the context of this paper this adaptive effect 

is different from directly affecting fitness as some of the adaptive mutations will elicit their effect 

on the phenotype only in the presence of additional adaptive mutations (epistasis).  

Key to the method is the use of the interaction network to guide the search. The method belongs 

to the class of subnetwork selection methods that have been used to interpret differential 
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expression data on networks (Alexeyenko, et al. 2012; Glaab, et al. 2012; Ma, et al. 2011), for 

gene prioritization (Hu, et al. 2014; Verbeke, et al. 2013) or for linking KO genes or genes from a 

genetic screen to an expression phenotype (Lan, et al. 2011; Ourfali, et al. 2007), but that have 

not yet been used to solve the combined problem of searching for molecular pathway consistency 

in independently evolved clones and driver gene identification. 

Several recent studies in cancer have shown how searching for mutational consistency at 

pathway level between independently evolved samples can aid in prioritizing drivers. These 

methods use genomic information as input and identify driver genes as genes carrying somatic 

mutations that are frequently mutated in different tumor samples and/or that are in each other’s 

neighborhood in a human genome-wide interaction network (Babaei, et al. 2013; Hofree, et al. 

2013; Vandin, et al. 2011; Verbeke, et al. 2015) and/or that display patterns of mutual exclusivity 

over different tumor samples (Leiserson, et al. 2013; Vandin, et al. 2012). All of the 

abovementioned techniques rely mainly on genomic information and are applicable only when 

large numbers of independent samples are available (in a cancer setting often at least 1000 tumor 

samples are available (Cancer Genome Atlas Research, et al. 2013). This in contrast to evolution 

experiments in micro-organisms which contain too few independently evolved samples (clones) 

to directly apply the abovementioned data-driven methods that mainly rely on genotype data.  

Therefore, we combine molecular profiling data (expression data) with genomic data to 

increase the signal of mutational consistency at the molecular pathway level. This compensates 

partly for the number of evolved samples usually available in studies on microbial clonal systems. 

Because of the eQTL setting drivers that affect expression are more likely to be identified. Based 

on the few eQTL studies that have been performed it appears that at least in microbes adaptive 

mutations often result in a sometimes marginal but significant expression response compared to 

their (immediate) ancestor (Carroll and Marx 2013; Rodriguez-Verdugo, et al. 2015). 
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Furthermore, In contrast to the statistical and diffusion based methods used in cancer 

research, we have developed a method that can more explicitly exploit prior information to drive 

the search for drivers. To that end our method relies on a probabilistic subnetwork selection 

technique that in a first pathfinding step uses an explicit path definition to find paths in a weighted 

(by expression data), probabilistic subnetwork. This allows integrating prior and/or condition 

specific data on the biological process of interest to steer the search towards specific parts of the 

genome-wide interaction network by exploiting the directionality of the network to define 

biologically relevant paths and by assigning prior weights to the edges of the network that are 

likely to be active under the assessed conditions.  

 The optimization function actively searches for overlap in the selected subnetworks 

allowing to detect mutational consistency at molecular pathway level, despite even a low number 

of independently evolved lines. The required overlap between paths can be tuned using the edge 

cost parameter. Driver mutations exhibit a high degree of mutational consistency at the molecular 

pathway level. Therefore, using a high edge cost, which forces the selection of subnetworks with 

a large overlap between paths over the different evolved lines, leads to fewer false positives 

amongst the identified driver mutations. On the semi-synthetic data set it was illustrated how a 

sweep on the edge cost parameter can be used to successfully prioritize the most likely candidate 

drivers. 

 Using two biological data sets, the potential of applying the method on eQTL data for 

studying the molecular mechanisms underlying adaptive traits was illustrated. From a large 

number of potential mutations the method was able to select previously identified driver mutations. 

In addition to this, potential driver mutations could be identified and verified with literature. The 

potential of the method to distinguish passengers from driver mutations was also shown on 

mutator phenotypes, where a large amount of passenger mutations are present but where the 

method was able to rank the previously identified driver genes as highly likely to be driver genes. 
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 It is important to note that even if few mutations are available, it is often not clear which of 

those are the drivers (as is illustrated in the case of the Amikacin resistance) and which are 

potentiating mutations. Microbial systems are not guaranteed to display mutational consistency at 

gene level, solely relying on mutational consistency of the same mutation in independent lines to 

identify drivers might fail. Because of this, the experimental identification of drivers is tedious as it 

requires reintroducing all possible individual driver mutations and, in case of complex phenotypes, 

their possible combinations in the ancestral strain (Barrick and Lenski 2013). As illustrated with 

the biological test cases, the combination of an eQTL setting with the dedicated network-based 

approach allows to drastically reduce the list of possible driver genes. 

Using a dedicated network-based analysis to an eQTL data sets is key to better 

understanding basic concepts of microbial evolution. Experimental evolution has become an 

important experiment in wet-lab practice to study interesting phenotypes, e.g. the role of epistasis 

(Chou, et al. 2011; Khan, et al. 2011; Kvitek and Sherlock 2011; Woods, et al. 2011) or to 

understand the degree to which parallelism occurs (Herron and Doebeli 2013; Khan, et al. 2011; 

Kvitek and Sherlock 2013; Tenaillon, et al. 2012). Interpreting identified drivers in terms of the 

molecular interaction network can potentially contribute to a better understanding of why epistasis 

or parallelism occurs beyond the level of mutational consistency. An illustration of such parallelism 

was shown in the analysis of the Amikacin dataset, where based on only 4 independently evolved 

lines, the network method was able to identify two different mechanisms by which strains alter 

their proton motive force to lower Amikacin uptake. Each of these mechanisms was identified by 

exploiting parallelism at molecular pathway level. Interestingly both mechanisms, one involving 

direct mutations in the electron transport chain and one involving mutations in cpxA, appeared 

mutually exclusive i.e. strains had either mutations in their electron transfer chain or in cpxA but 

never simultaneously in both. This shows that the network-based eQTL method is not only able 

to successfully exploit parallelism, but also allows identifying convergent ways of evolution that 

lead to the same adaptive phenotype. 
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In this study we presented a network based analysis method that exploits public 

interactomics knowledge to analyze eQTL data sets. The results of this method provide a 

simultaneous prioritization of driver mutations and an understanding of the adaptive phenotype at 

the molecular pathway level. This method exploits the potential of coupled genotype-expression 

data sets to study experimental evolution and bacterial trait selection in bacteria. 
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Figure legends 
Fig. 1. - Overview of the network-based eQTL method. The input of the method consists of 

respectively coupled genotype and expression phenotype data for a set of evolved lines with the 

same phenotype and a genome-wide interaction network. Red and green indicate respectively 

over- and under expression with respect to a reference. Genes that are considered to be 

significantly differentially expressed according to a test statistic, are indicated by a specific symbol 

as displayed on the figure legend. Mutated driver and passenger genes are indicated with two 

different symbols as displayed on the legend. The numbering of each mutated gene indicates the 

evolved line in which this mutated gene occurred.  A. Construction of the end point specific 

probabilistic subnetworks: for each evolved line the genome-wide interaction network is converted 

into a probabilistic subnetwork by assigning to each edge in the genome-wide interaction network 

a weight that is interpreted as the probability that the edge has an influence on the assessed 

phenotype. These weights depend on the level of differential expression of the terminal node of 

the edge. Genes that are more differentially expressed (darker red/green) will give rise to higher 

weights on the edges (indicated by the width of the edge). B. Pathfinding in each of the 

probabilistic subnetworks. The mutated and significantly differentially expressed genes occurring 

in each of the evolved lines are mapped to the corresponding end point specific probabilistic 

subnetworks. For each significantly differentially expressed gene all possible paths from this gene 

to all mutated genes in the same end point are searched for (paths are shown as black curves). 

C. Optimal subnetwork selection. Optimization is performed by integrating the paths found in all 

end point specific probabilistic networks according to a predefined cost function that positively 

scores the addition of paths connecting pairs of mutated genes-differentially expressed genes 

observed in any of the end points, but that penalizes the addition of edges. As a result, paths that 

are strongly connected to the expression phenotype and that overlap with each other are selected 

as the optimal subnetwork. 
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Fig. 2. – Performance assessment of the network-based eQTL method on the semi-synthetic data 

set. Data of all selected mutated genes at specific ranks are presented as Tukey boxplots. Note 

that multiple mutated genes can have identical ranks as ranks are assigned based on the maximal 

edge cost for which a mutation is present within the subnetwork and thus multiple mutated genes 

can have identical maximal edge costs for which they are present within the subnetwork. The 

upper plot shows the positive predictive value (PPV, fraction of the selected mutations which are 

true positives, i.e. driver mutations) in terms of the ranks of the selected mutations. It can be seen 

that low ranks have higher PPV values. Note that at rank 1 the variance is high. This is because 

inferred subnetworks for rank 1 are small, and therefore more prone to random effects. i.e. the 

selection of one additional false positive in a particular random set largely affects the PPV. 

Solutions are clearly less variable from rank 2 onwards. The lower plot shows the sensitivity 

(fraction of all possible true positives selected) in terms of the ranks of the selected mutations. 

Sensitivity increases with rank, implying a trade-off between PPV and sensitivity. 

Fig. 3. - Visualization of subnetworks inferred from the Amikacin resistance data set based on 

data from 100 randomizations. The visualization was created by merging separate inferred 

subnetworks resulting from a parameter sweep of the edge cost from 0.25 to 1.75. The width of 

the edge displays the stringency at with the edge was selected (the wider the edge the more 

stringent the condition. More Stringent conditions correspond to higher edge costs).  Node borders 

are subdivided into four parts in order to visualize in which line a mutation occurred (evolved lines 

compared to ancestral line). The inner color of the nodes is also subdivided into four parts where 

each part represents the degree of differential expression in the corresponding line. The colors of 

the edges represent the edge types. 

Fig. 4. - Visualization of subnetworks inferred from the coexisting ecotypes data set. The 

visualization was created by merging separately inferred subnetworks resulting from a parameter 

sweep of the edge cost from 0.025 to 0.975. The width of the edges represents the maximal 
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mutation cost for which these edges were selected. The width of the edge displays the stringency 

at with the edge was selected (the wider the edge the more stringent the condition. More Stringent 

conditions correspond to higher edge costs). Node borders are subdivided into two parts in order 

to visualize in which strain a mutation occurred. The inner color of the nodes represents the degree 

of differential expression (L ecotype compared to S ecotype). The colors of the edges represent 

the edge types. 
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Table 1 – Data sets used to compile the Escherichia coli genome-wide interaction networks. 

Interaction type E. coli K12 MG1655 E. coli B REL606 E. coli K12 MDS42a 

Protein-protein 2737 (Jensen, et al. 2009) 2728 (Jensen, et al. 2009) 2534 (Jensen, et al. 2009) 

Protein-DNA 4492 (Salgado, et al. 2013) 3415 (Salgado, et al. 2013) 3890 (Salgado, et al. 2013) 

Sigma 727 (Salgado, et al. 2013) 1225 (Salgado, et al. 2013) 592 (Salgado, et al. 2013) 

Metabolic 2798 (Kanehisa, et al. 2014) 5146 (Kanehisa, et al. 2014) 2530 (Kanehisa, et al. 2014) 

Phosphorylation and 

dephosphorylation 

44 38 (Kanehisa, et al. 2014)  44 (Kanehisa, et al. 2014) 

Srna 213 (Salgado, et al. 2013) 2 (Salgado, et al. 2013) 171 (Salgado, et al. 2013) 

Size (edges) 11011 12554 9761 

Size (nodes) 2732 2643 2422 

a The E.coli K12 MDS42 network was derived from the E. coli K12 MG1655 network by deleting all edges 

connecting genes that do not exist in E. coli K12 MDS42.  
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Table 2 – Selected mutated genes prioritized as driver genes. 

AMK resistance Coexisting ecotypes 

Gene name ranka Line type Gene name ranka Line type 

CyoB 1 2,4 frameshift gntR 1 S missense 

CpxA 2 1,3 missense, in-frame del arcA 1 S missense 

NuoG 3 2 nonsense evgA 1 S missense 

rseA 3 4 nonsense dnaK 2 S intergenic 

nuoN 3 4 In-frame del acs 3 S intergenic 

nuoC 4 4 missense flgG 4 S synonymous 

fusA 5 1,2,3,4 missense fbaB 5 L missense 

phoQ 6 1 missense cpsG 5 L Large del 

arcB 7 3 Frameshift del fruK 6 S missense 

gapA 8 2 missense rpiR 7 L intergenic 

ClsA 9 1 missense glk 7 S intergenic 

rho 10 1 missense     
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