
RobBERT: a Dutch RoBERTa-based Language Model

Pieter Delobelle1 and Thomas Winters1 and Bettina Berendt1,2
1 Department of Computer Science, KU Leuven

2 Faculty of Electrical Engineering and Computer Science, TU Berlin
firstname.lastname@kuleuven.be

Abstract

Pre-trained language models have been dom-
inating the field of natural language process-
ing in recent years, and have led to significant
performance gains for various complex natu-
ral language tasks. One of the most prominent
pre-trained language models is BERT, which
was released as an English as well as a multi-
lingual version. Although multilingual BERT
performs well on many tasks, recent studies
show that BERT models trained on a single
language significantly outperform the multi-
lingual version. Training a Dutch BERT model
thus has a lot of potential for a wide range of
Dutch NLP tasks. While previous approaches
have used earlier implementations of BERT
to train a Dutch version of BERT, we used
RoBERTa, a robustly optimized BERT ap-
proach, to train a Dutch language model called
RobBERT. We measured its performance on
various tasks as well as the importance of the
fine-tuning dataset size. We also evaluated
the importance of language-specific tokenizers
and the model’s fairness. We found that Rob-
BERT improves state-of-the-art results for var-
ious tasks, and especially significantly outper-
forms other models when dealing with smaller
datasets. These results indicate that it is a
powerful pre-trained model for a large vari-
ety of Dutch language tasks. The pre-trained
and fine-tuned models are publicly available to
support further downstream Dutch NLP appli-
cations.

1 Introduction

The advent of neural networks in natural lan-
guage processing (NLP) has significantly im-
proved state-of-the-art results within the field. Ini-
tially, recurrent neural networks and long short-
term memory networks dominated the field. Later,
the transformer model caused a revolution in NLP
by dropping the recurrent part and only keeping
attention mechanisms (Vaswani et al., 2017). The

transformer model led to other popular language
models, e.g. GPT-2 (Radford et al., 2018, 2019).
BERT (Devlin et al., 2019) improved over previ-
ous models and recurrent networks by allowing
the system to learn from input text in a bidirec-
tional way, rather than only from left-to-right or
the other way around. This model was later re-
implemented, critically evaluated and improved in
the RoBERTa model (Liu et al., 2019).

These large-scale attention-based models pro-
vide the advantage of being able to solve NLP
tasks by having a common, expensive pre-training
phase, followed by a smaller fine-tuning phase.
The pre-training happens in an unsupervised way
by providing large corpora of text in the desired
language. The second phase only needs a rela-
tively small annotated dataset for fine-tuning to
outperform previous popular approaches in one of
a large number of possible language tasks.

While language models are usually trained on
English data, some multilingual models also ex-
ist. These are usually trained on a large quan-
tity of text in different languages. For example,
Multilingual-BERT is trained on a collection of
corpora in 104 different languages (Devlin et al.,
2019), and generalizes language components well
across languages (Pires et al., 2019). However,
models trained on data from one specific language
usually improve the performance of multilingual
models for this particular language (Martin et al.,
2019; de Vries et al., 2019). Training a RoBERTa
model (Liu et al., 2019) on a Dutch dataset thus
also potentially increases performances for many
downstream Dutch NLP tasks. In this paper, we
introduce RobBERT1, a Dutch RoBERTa-based
pre-trained language model, and critically evaluate
its performance on various language tasks against

1The model named itself RobBERT when it was
prompted with “Ik heet <mask>BERT.” (“My name is
<mask>BERT.”), which we found quite a suitable name.



other Dutch languages models. We also pro-
pose several new tasks for testing the model’s ze-
roshot ability, evaluate its performance on smaller
datasets, and for measuring the importance of a
language-specific tokenizer. Finally, we provide
an extensive fairness evaluation using recent tech-
niques and a new translated dataset.

2 Related Work

Transformer models have been successfully used
for a wide range of language tasks. Initially, trans-
formers were introduced for use in machine trans-
lation, where they efficiently improved the state-
of-the-art (Vaswani et al., 2017). This cornerstone
was used in BERT, a transformer model obtain-
ing state-of-the-art results for eleven natural lan-
guage processing tasks, such as question answer-
ing and natural language inference (Devlin et al.,
2019). BERT is pre-trained with large corpora of
text using two unsupervised tasks. The first task is
called masked language modeling (MLM), mak-
ing the model guess which word is masked in cer-
tain position in the text. The second task is next
sentence prediction, in which the model has to pre-
dict if two sentences occur subsequent in the cor-
pus, or randomly sampled from the corpus. These
tasks allow the model to create internal represen-
tations about a language, which could thereafter
be reused for different language tasks. This archi-
tecture has been shown to be a general language
model that could be fine-tuned with little data in
a relatively efficient way for a very distinct range
of tasks and still outperform previous architectures
(Devlin et al., 2019).

Transformer models are also capable of gen-
erating contextualized word embeddings (Peters
et al., 2018). Traditional word embeddings, e.g.
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), lack the capibility of differ-
entiating words based on context (e.g. “a stick”
versus “let’s stick to”). Transformer models, like
BERT, on the other hand automatically incorpo-
rate the context a word occurs into its embedding.

The attention mechanism in transformer en-
coder models also allows for better resolution of
coreferences between words (Joshi et al., 2019a).
For example, in the sentence “The trophy doesn’t
fit in the suitcase because it’s too big.”, the word
“it” would refer to the the suitcase instead of the
trophy if the last word was changed to “small”
(Levesque et al., 2012). Being able to resolve

these coreferences is for example important for
translation, as dependent words might change
form, e.g. due to word gender.

While BERT has been shown to be a power-
ful language model, it also received scrutiny on
its training and pre-processing. The authors of
RoBERTa (Liu et al., 2019) showed that while
the NSP pre-training task made the model perform
better, it was not due to its intended reason, as it
might merely predict relatedness between corpus
sentences rather than subsequent sentences. That
Devlin et al. (2019) trained a better model when
using NSP than without NSP is likely due to the
model learning long-range dependencies that were
longer than when just using single sentences. As
such, the RoBERTa model uses only the MLM
task, and uses multiple full sentences in every in-
put. Other researchers later improved the NSP
task by instead making the model predict for two
subsequent sentences if they occur in the given or
flipped order in the corpus (Lan et al., 2019).

Devlin et al. (2019) also presented a multi-
lingual model (mBERT) with the same archi-
tecture as BERT, but trained on Wikipedia cor-
pora in 104 languages. Unfortunately, the qual-
ity of these multilingual embeddings is consid-
ered worse than their monolingual counterparts,
as Rönnqvist et al. (2019) illustrated for German
and English models in a generative setting. The
monolingual French CamemBERT model (Mar-
tin et al., 2019) also outperformed mBERT on all
tasks. Brandsen et al. (2019) also outperformed
mBERT on several Dutch tasks using their Dutch
BERT-based language model, called BERT-NL,
trained on the small SoNaR corpus (Oostdijk et al.,
2013a). More recently, de Vries et al. (2019)
also showed similar results for Dutch using their
BERTje model, outperforming multilingual BERT
in a wide range of tasks, such as sentiment analy-
sis and part-of-speech tagging by pre-training on
multiple corpora. Since both these works are con-
current with ours, we compare our results with
BERTje and BERT-NL in this paper.

3 Pre-training RobBERT

We pre-trained RobBERT using the RoBERTa
training regime. We trained two different versions,
one where only the pre-training corpus was re-
placed with a Dutch corpus (RobBERT v1) and one
where both the corpus and the tokenizer were re-
placed with Dutch versions (RobBERT v2). These



two versions allow to evaluate the importance of
having a language-specific tokenizer.

3.1 Data
We pre-trained our model on the Dutch section of
the OSCAR corpus, a large multilingual corpus
which was obtained by language classification in
the Common Crawl corpus (Ortiz Suárez et al.,
2019). This Dutch corpus is 39GB large, with
6.6 billion words spread over 126 million lines of
text, where each line could contain multiple sen-
tences. This corpus is thus much larger than the
corpora used for similar Dutch BERT models, as
BERTje used a 12GB corpus, and BERT-NL used
the SoNaR-500 corpus (about 2.2GB). (de Vries
et al., 2019; Brandsen et al., 2019).

3.2 Tokenizer
For RobBERT v2, we changed the default byte
pair encoding (BPE) tokenizer of RoBERTa to a
Dutch tokenizer. The vocabulary of the Dutch
tokenizer was constructed using the Dutch sec-
tion of the OSCAR corpus (Ortiz Suárez et al.,
2019) with the same byte-level BPE algorithm as
RoBERTa (Liu et al., 2019). This tokenizer grad-
ually builds its vocabulary by replacing the most
common consecutive tokens with a new, merged
token. We limited the vocabulary to 40k words,
which is 10k words less than RobBERT v1, due to
additional tokens including non-negligible num-
ber of Unicode tokens that are not used in Dutch.
These are likely caused due to misclassified sen-
tences during the creation of the OSCAR cor-
pus (Ortiz Suárez et al., 2019).

3.3 Training
RobBERT shares its architecture with RoBERTa’s
base model, which itself is a replication and
improvement over BERT (Liu et al., 2019).
Like BERT, it’s architecture consists of 12 self-
attention layers with 12 heads (Devlin et al., 2019)
with 117M trainable parameters. One difference
with the original BERT model is due to the differ-
ent pre-training task specified by RoBERTa, us-
ing only the MLM task and not the NSP task.
During pre-training, it thus only predicts which
words are masked in certain positions of given
sentences. The training process uses the Adam op-
timizer (Kingma and Ba, 2017) with polynomial
decay of the learning rate lr = 10−6 and a ramp-
up period of 1000 iterations, with hyperparame-
ters β1 = 0.9 and RoBERTa’s default β2 = 0.98.

Additionally, a weight decay of 0.1 and a small
dropout of 0.1 helps prevent the model from over-
fitting (Srivastava et al., 2014).

RobBERT was trained on a computing cluster
with 4 Nvidia P100 GPUs per node, where the
number of nodes was dynamically adjusted while
keeping a fixed batch size of 8192 sentences. At
most 20 nodes were used (i.e. 80 GPUs), and
the median was 5 nodes. By using gradient ac-
cumulation, the batch size could be set indepen-
dently of the number of GPUs available, in order
to maximally utilize the cluster. Using the Fairseq
library (Ott et al., 2019), the model trained for
two epochs, which equals over 16k batches in to-
tal, which took about three days on the computing
cluster. In between training jobs on the comput-
ing cluster, 2 Nvidia 1080 Ti’s also covered some
parameter updates for RobBERT v2.

4 Evaluation

We evaluated RobBERT on multiple downstream
Dutch language tasks. For testing text classi-
fication, we evaluate on sentiment analysis and
on demonstrative and relative pronoun prediction.
The latter task helps evaluating the zero-shot pre-
diction abilities, i.e. using only the pre-trained
model without any fine-tuning. Both classifica-
tion tasks are also used to measure how well Rob-
BERT performs on smaller datasets, by only us-
ing subsets of the data. For testing RobBERT’s
token tagging capabilities, we used both part-of-
speech (POS) tagging and named entity recogni-
tion (NER) tasks.

4.1 Sentiment Analysis

We replicated the high-level sentiment analysis
task used to evaluate BERT-NL (Brandsen et al.,
2019) and BERTje (de Vries et al., 2019) to be able
to compare our methods. This task uses a dataset
called Dutch Book Reviews dataset (DBRD), in
which book reviews from hebban.nl are la-
beled as positive or negative (van der Burgh and
Verberne, 2019). Although the dataset contains
118,516 reviews, only 22,252 of these reviews are
actually labeled as positive or negative, which are
split in a 90% train and 10% test datasets. This
dataset was released in a paper analysing the per-
formance of an ULMFiT model (Universal Lan-
guage Model Fine-tuning for Text Classification
model) (van der Burgh and Verberne, 2019).

We fine-tuned RobBERT on the first 10,000

hebban.nl


Table 1: Results of RobBERT fine-tuned on several downstream classification tasks, compared to the state of the
art models for the tasks. For accuracy, we also report the 95% confidence intervals. (Results annotated with * from
van der Burgh and Verberne (2019), ** from de Vries et al. (2019), *** from Brandsen et al. (2019), **** from
Allein et al. (2020))

10k Full dataset
Task + model ACC (95% CI) [%] F1 [%] ACC (95% CI) [%] F1 [%]

Sentiment Analysis (DBRD)
van der Burgh and Verberne (2019) — — 93.8* —

BERTje (de Vries et al., 2019) — — 93.0** —
BERT-NL (Brandsen et al., 2019) — — — 84.0***

RobBERT v1 86.730 (85.32, 88.14) 86.729 94.422 (93.47,95.38) 94.422
RobBERT v2 94.379 (93.42, 95.33) 94.378 95.144 (94.25,96.04) 95.144

Die/Dat (Europarl)
Baseline (Allein et al., 2020) — — 75.03**** —
mBERT (Devlin et al., 2019) 92.157 (92.06, 92.25) 90.898 98.285 (98.24,98.33) 98.033

BERTje (de Vries et al., 2019) 93.096 (92.84, 93.36) 91.279 98.268 (98.22,98.31) 98.014
RobBERT v1 97.006 (96.95, 97.07) 96.571 98.406 (98.36, 98.45) 98.169
RobBERT v2 97.816 (97.76, 97.87) 97.514 99.232 (99.20, 99.26) 99.121

training examples as well as on the full dataset.
While the ULMFiT model is first fine-tuned us-
ing the unlabeled reviews before training the clas-
sifier (van der Burgh and Verberne, 2019), it is
unclear whether the other BERT models utilized
the unlabeled reviews for further pre-training (Sun
et al., 2019) or only used the labeled data for fine-
tuning the pre-trained model. We did the latter,
meaning further improvement is possible by ad-
ditionally pre-training on unlabeled in-domain se-
quences. Another unknown is how these models
dealt with reviews that were longer than the max-
imum number of tokens, as the average book re-
view length is 547 tokens, with 40% of the docu-
ments being longer than our model could handle.
For our experiments, we only gave the last tokens
of a review as input, as we found the training per-
formance to be better, likely due to containing a
summarizing comments. We trained our model
for 2000 iterations with a batch size of 128 and
a warm-up of 500 iterations, reaching a learning
rate of 10−5. The training took approx. 2 hours
on 2 Nvidea 1080 Ti GPUs, the best-performing
RobBERT v2 model was selected based on a val-
idation accuracy of 0.994. We see that RobBERT
outperforms the other BERT models. Both ver-
sions of RobBERT also outperform the state-of-
the-art ULMFiT model, although the difference is
only statistically significant for RobBERT v2.

4.2 Die/Dat Disambiguation

Since BERT models perform well on coreference
resolution tasks (Joshi et al., 2019b), we pro-
pose to evaluate RobBERT on the recently in-
troduced “die/dat disambiguation” task (Allein
et al., 2020), as a novel way to evaluate the ze-
roshot ability of Dutch BERT models. In Dutch,
depending on the sentence, both “die” and “dat”
can be either demonstrative or relative pronouns;
in addition they can also be used in a subordinat-
ing conjunction, i.e. to introduce a clause. The use
of either of these words depends on the gender of
the word it refers to. Allein et al. (2020) presented
multiple models trained on the Europarl (Koehn,
2005) and SoNaR corpora (Oostdijk et al., 2013b),
achieving an accuracy of 75.03% on Europarl to
84.56% on SoNaR.

For this task, we use the Dutch Europarl cor-
pus (Koehn, 2005), with the first 1.3M sequences
(head) for training and last 399k (tail) as test
set. Every sequence containing “die” or “dat”
creates an example for every occurrence of either
word by masking the occurrence. For the test set,
this resulted in about 289k masked sentences.

BERT-like models can solve this task using two
different approaches. Since the task is about pre-
dicting words, their default MLM task can be used
to guess which of the two words is more probable
in a particular masked position. This allows the
comparison of zero-shot BERT models, i.e. with-
out any fine-tuning on the training data (Table 2).



The second approach uses the masked sentences to
create two versions by filling the mask with either
“die” and “dat”, separate them using the [SEP]
token and making the model predict which of the
two sentences is correct. This fine-tuning was per-
formed using 4 Nvidia GTX 1080 Ti GPUs, taking
30 minutes for 13 epochs on 10k sequences and
about 24 hours for 3 epochs on the full dataset. We
did no hyperparameter tuning, as the initial hyper-
parameters (lr = 10−5, ε = 10−9, warm-up of 250
steps, batch size of 32 (10k) or 128 (full dataset),
dropout of 0.1) were satisfactory.

To measure RobBERTs performance on smaller
datasets, we trained the model twice for both the
sentiment analysis task and the die/dat disam-
biguation task, once with a subset of 10k utter-
ances, and once with the full training dataset.

Table 2: Performance of predicting die/dat as most
likely candidate for a mask using zero-shot BERT mod-
els (i.e. without fine-tuning) as well as a majority class
predictor (ZeroR), tested on the 288,799 test set sen-
tences

Model Accuracy [%]

ZeroR (majority class) 66.70
mBERT (Devlin et al., 2019) 90.21

BERTje (de Vries et al., 2019) 94.94
RobBERT v1 98.03
RobBERT v2 98.75

RobBERT outperforms previous models as well
as other BERT models both with as well as with-
out fine-tuning (see Table 1 and Table 2). It is also
able to reach similar performance using less data.
The fact that both for the fine-tuned and the zero-
shot setting, RobBERT outperforms other BERT
models is also an indication that the base model
has internalised more knowledge about Dutch than
the others, likely due to the improved pre-training
regime and using a larger corpus. We can also see
that having a Dutch tokenizer strongly helps re-
duce the error rate for this task, halving the error
rate when fine-tuned on the full dataset. The rea-
son the BERT-based models outperform the pre-
vious RNN-based approach is likely the encoders
ability to better deal with coreference resolution
(Joshi et al., 2019a), and by extension deciding
which word the “die” or “dat” belongs to. The
fact that RobBERT strongly outperforms the other
BERT models on subsets of the data indicates that
it is a suitable candidate for Dutch tasks that only

have limited data available.

4.3 Part-of-speech Tagging

Part-of-speech (POS) tagging involves labeling to-
kens rather than labeling sequences. For this, we
used a different head with an classification output
for each token, all activated by a softmax function.
When a word consists of multiple tokens, the first
token is used for the the label of the word.

We perform the same POS fine-tuning regimes
as RoBERTa (Liu et al., 2019) to evaluate Rob-
BERT’s performance. When fine-tuning, we em-
ploy a linearly decaying learning rate with a warm-
up for 6% of the total optimisation steps (Liu et al.,
2019). For all the encoder-based models in our
evaluation, we also perform a limited hyperparam-
eter search on the development set with learning
rate lr ∈ {10−5, 2 · 10−5, 3 · 10e−5, 10−4} and
batch size ∈ {16, 32, 48}, which is also based on
RoBERTa’s fine-tuning.

Table 3: POS tagging on Lassy UD. For accuracy, we
also report the 95% confidence intervals.

Task + model ACC (95% CI) [%]

Frog (Bosch et al., 2007) 91.7 (91.2, 92.2)
mBERT (Devlin et al., 2019) 96.5 (96.2, 96.9)

BERTje (de Vries et al., 2019) 96.3 (96.0, 96.7)
RobBERT v1 96.4 (96.0, 96.7)
RobBERT v2 96.4 (96.0, 96.7)

To evaluate the POS-performance, we used
the Universal Dependencies (UD) version of the
Lassy dataset (Van Noord et al., 2013), containing
17 different POS tags. We compared its perfor-
mance with Frog, a popular memory-based Dutch
POS tagging approach, and with other BERT mod-
els. Surprisingly, multilingual BERT marginally
outperformed both Dutch BERT models, although
not statistically significantly, with both RobBERT
models in second place with an almost equal ac-
curacy. The higher performance of multilingual
BERT could be indicative that it benefits from
transferable language structures from other lan-
guages helping it to perform well for POS tagging.
Alternatively, this could signal a limit of the UD
Lassy dataset, or at least for the performance of
BERT-like models on this dataset.

We also evaluated the models on several smaller
subsets of the training data, to illustrate how much
data is needed to achieve acceptable results. For
all models, the same hyperparameters obtained for
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Figure 1: POS tagging accuracy on the test set for dif-
ferent sizes of training sets.

Table 3 are used for all subsets, under the as-
sumption that using a subset of the training data
also works well under the same hyperparameters.
The hyperparameters which yielded the results of
RobBERT v2 are lr = 10−4, batch size of 16
and dropout of 0.1. The separate development set
was used to select the best-performing model after
each epoch based , which had a cross-entropy loss
of 0.172 on the development set. While all BERT
models perform similarly after seeing all instances
of the UD Lassy dataset, there is a clear difference
when using smaller training sets (Figure 1). Rob-
BERT v2 outperforms all other models when using
only 1,000 data points or less, again showing that
it is more capable of dealing with smaller datasets.

4.4 Named Entity Recognition
Named entity recognition (NER) is the task of la-
beling named entities in a sentence. It is thus a
token-level task, just like POS-tagging, meaning
we can use the same setup and hyperparameter
tuning as described in Subsection 4.3. We use
the CoNLL-2002 dataset and evaluation script2,
which use a four value BIO labeling, namely
for organisations, locations, people and miscel-
laneous (Tjong Kim Sang, 2002). The hyper-
parameters yielding the results for RobBERT v2
are lr = 3 · 10−5, batch size of 32 and dropout
of 0.1. The separate development set was used
to select the best-performing model after each
epoch. As the F1 score is generally used for
evaluation of this task, we opted to use this met-
ric instead of cross-entropy loss for selecting the
best-performing model, which had an F1 score of
0.8769 on the development set. We compared the

2Retrieved from https://www.clips.uantwerp
en.be/conll2002/ner/

F1 scores on the NER task in Table 4.

Table 4: NER for various models, F1 score calculated
with the CoNLL 2002 evaluation script, except for †
which used the Seqeval Python library, * from Wu and
Dredze (2019), ** from Brandsen et al. (2019), ***
from de Vries et al. (2019).

Task + model F1 score [%]

Frog (Bosch et al., 2007) 57.31
mBERT (Devlin et al., 2019) 84.19

mBERT (Wu and Dredze, 2019) 90.94*
BERT-NL (Brandsen et al., 2019) 89.7†**

BERTje (de Vries et al., 2019) 88.3***
RobBERT v1 87.53
RobBERT v2 89.08

We can see that (Wu and Dredze, 2019) outper-
forms all other BERT models using a multilingual
BERT model with an F1 score of 90.94. When
we used the token labeling fine-tuning regime de-
scribed earlier on multilingual BERT, we were
only able to get to an F1 score of 84.19 using mul-
tilingual BERT, thus being outperformed by the
Dutch BERT models. One possibility is that the
authors used a more optimal fine-tuning regime,
or that they trained their model longer.

5 RobBERT and Fairness

As language models are trained on large cor-
pora, this poses a risk that minorities and pro-
tected groups are ill-represented, e.g. by en-
coding stereotypes (Bolukbasi et al., 2016; Zhao
et al., 2019; Gonen and Goldberg, 2019). In
word embeddings, these studies often rely on
analogies (Bolukbasi et al., 2016; Caliskan et al.,
2017) or embedding analysis (Gonen and Gold-
berg, 2019). These approaches are not directly
transferable to BERT models, since the sentence
the word occurs in influences its embedding.

Efforts to generalize these approaches often rely
on templates (May et al., 2019; Kurita et al., 2019).
These can be intentionally neutral (“<mask> is a
word”) or they might resemble an analogy in tex-
tual form (“<mask> is a zookeeper.”). One can
then perform an association test between possible
values for the<mask> slot, similar to a word em-
bedding association test (Caliskan et al., 2017).

In this section, we discuss two distinct potential
origins of representational harm (Blodgett et al.,
2020) a language model could exhibit, and eval-
uate these on RobBERT v2. The two discussed
behaviours are (i) stereotyping of gender roles in

https://www.clips.uantwerpen.be/conll2002/ner/
https://www.clips.uantwerpen.be/conll2002/ner/
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Figure 2: Ranking difference between gendered pro-
nouns for various professions. Three templates were
used to evaluate, were <T> is replaced by a profes-
sion. In the leftmost template, the pronoun and profes-
sion refer to different entities.

occupations and (ii) unequal predictive power for
texts written by men and women. These exemplifi-
cations highlight how language models risk affect-
ing the experience of the end user, or replicating
and reinforcing stereotypes.

5.1 Gender Stereotyping

To assess how gender stereotypes of professions
are present, we performed a template-based asso-
ciation test similar to Kurita et al. (2019) and the
semantically unbleached templates of May et al.
(2019). We used RobBERT’s LM head—trained
during pre-training with the MLM task—to fill in
the <mask> slot for each template, in the same
manner as the zero-shot task described in Sub-
section 4.2. These templates have a second slot,
which is used to iterate over the professions.

For this list of professions and the gender pro-
jection on the he-she axis, we base us on the work
by Bolukbasi et al. (2016), who crowdsourced the
associated gender for various professions. Ideally,
we would use a similarly crowdsourced Dutch
dataset. However, since this does not yet exist,
we opted for manually translating these English
professions using the guidelines established by
the European Parliament for gender neutral pro-
fessions (Dimitrios Papadimoulis, 2018), meaning
that we opted for the inclusive form for neutral
professions in English that do not have a neutral
counterpart, but an inclusive binary male variant
and a female variant with explicit gender (e.g. for
lawyer: using “advocaat” and not “advocate”).
In the rare case that an inclusive or neutral form
translated to an exclusive binary form, we ex-
cluded this profession.

We evaluated three templates on RobBERT, in-
cluding one control template without co-referent
entities (“<mask> goes to a <T>”) (Figure 2).

For the control template, there should be no and
indeed is no correlation between ranking differ-
ence for both pronouns and the associated gen-
der of a profession. Interestingly, none of the in-
stances has a positive ranking difference, meaning
the language model always ranks the male pro-
noun as more likely.

When the profession and <mask> slot refer to
the same entity, the general assessment of the lan-
guage model correlates with the associated gender.
But again, RobBERT estimates that the male pro-
noun is more likely in almost all cases, even when
these professions have a gendered suffix. Curi-
ously, actress (“actrice”) is the only word where
this is not the case. Since RobBERT estimates the
male pronoun to be more likely even in the control
template, we suspect that the effect is due to more
coverage of men in the training corpus.

5.2 Unequal Predictive Performance
Unfairness is particularly problematic if it leads
to unequal predictive performance. This prob-
lem has been demonstrated for decision support
systems, including recidivism prediction (Angwin
et al., 2016) and public employment services (All-
hutter et al., 2020). Such predictions can be down-
stream tasks of language understanding; for exam-
ple when job resumés are processed (Van Hautte
et al., 2020).

To review fairness in downstream tasks, we
evaluated the sentiment analysis task on DBRD, a
dataset with scraped book reviews. Although this
task in itself may have low impact for end users, it
still serves as an illustrative example of how fine-
tuned models can behave unfairly.

To investigate whether such bias might result
for our fine-tuned model, we analyzed its out-
come for different values of a sensitive attribute
(in this case gender), as is commonly done in
fair machine learning research (Zemel et al., 2013;
Hardt et al., 2016; Delobelle et al., 2020). To this
end, we augmented the held-out test set of DBRD
with gender as a sensitive attribute for each re-
view3. Values were obtained from the reviews’
author profiles with a self-reported binary gender
(‘man’ or ‘vrouw’) (64%). The remaining 36%
of reviews did not report author gender, and they
were discarded for this evaluation. Of the remain-
ing, gender-labelled, reviews, 76% were written

3We make this augmentation of DBRD available under
CC-by-NC-SA at https://people.cs.kuleuven.b
e/˜pieter.delobelle/data.html.

https://people.cs.kuleuven.be/~pieter.delobelle/data.html
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Figure 3: ROC of the fine-tuned model to predict posi-
tive reviews for male and female reviewers

by women. Thus, the dataset is unbalanced.
We quantify the gender difference with two

metrics: (i) Demographic Parity Ratio (DPR),
which expresses a relative difference between pre-
dicted outcomes ŷ conditioned on the sensitive at-
tribute a (Dwork et al., 2012), following

P (ŷ | ¬a)
P (ŷ | a)

,

and (ii) Equal Opportunity (EO) Hardt et al.
(2016), which in addition also conditions on the
true outcome y, as a task-specific fairness measure
(Dwork et al., 2012), following

P (ŷ | ¬a, y)− P (ŷ | a, y).

Hardt et al. (2016) also relate EO to the ROC
curves to evaluate fairness when dealing with a bi-
nary predictor and a score function. To derive a
binary predictor, we used 0 as a threshold value.
Figure 3 shows the single resulting predictor, with
the ROC curves split on the sensitive attribute, for
each of the two rating levels (over 3 resp. 5 stars).

The results of Figure 3 show that there is small
difference in opportunity, which is especially pro-
nounced for the highly positive classifier. For pos-
itive reviews, the EO difference is 0.028 at the in-
dicated threshold and DPR is 70.2%. The DPR
would indicate an unfairness, as values below 80%
are often considered unfair. However, this metric
has received some criticism, and when including
the true outcome in EO, the difference in probabil-
ities is close to 0, which does not signal any unfair-
ness. When taking into account the ROC curves
(Figure 3), the EO score can be explained by the
good predictive performance. When considering
highly positive reviews, however, the differences
become more pronounced and the model has bet-
ter predictive performance for reviews written by
women.

6 Code

The training and evaluation code of this paper as
well as the RobBERT model and the fine-tuned
models are publicly available for download at ht
tps://github.com/iPieter/RobBERT.

7 Limitations and Future Work

There are several potential improvements for cre-
ating a better pre-trained RobBERT-like model.
First, since BERT-based models are still being ac-
tively researched, one could potentially improve
the training regime using new unsupervised pre-
training tasks when they are discovered, e.g. sen-
tence order prediction (Lan et al., 2019). Sec-
ond, while RobBERT is trained on lines that con-
tain multiple sentences, it does not put subsequent
lines of the corpus after each other due to the shuf-
fled nature of the OSCAR corpus (Ortiz Suárez
et al., 2019). This is unlike RoBERTa, which does
put full sentences next to one another if they do
not exceed the available sequence length, in or-
der to learn the long-range dependencies between
words that the original BERT learned using its
controversial NSP task. Creating an unshuffled
version of OSCAR might thus further improve
the performance of the pre-trained model. Third,
there might be some benefit to modifying the to-
kenizer to use morpheme-based tokens, as Dutch
uses compound words. Fourth, one could improve
model’s fairness during pre-training. We illus-
trated how representational harm in downstream
tasks can affect the end user’s experience, like
the unequal predictive performance for the DBRD
task. Various methods have been proposed to mit-
igate unfair behaviour in AI models (Zemel et al.,
2013; Delobelle et al., 2020). While we refrained
from training fair pre-trained and fine-tuned mod-
els in this research, training such models could be
an interesting contribution. In addition, with the
increased attention on fairness in machine learn-
ing, a broader view of the impact on other pro-
tected groups due to large pre-trained language
models is also called-for.

The RobBERT model itself can be used in new
settings to help future research. First, RobBERT
could be used in a model that uses a BERT-like
transformer stack for the encoder and a genera-
tive model as a decoder (Raffel et al., 2019; Lewis
et al., 2019) Second, RobBERT can serve as the
basis for a large number of Dutch language tasks
that we did not examine in this paper. Given Rob-

https://github.com/iPieter/RobBERT
https://github.com/iPieter/RobBERT


BERT’s state-of-the-art performance on small as
well as on large datasets, it could help advance re-
sults when fine-tuned on new datasets.

8 Conclusion

We introduced a new language model for Dutch
based on RoBERTa, called RobBERT, and showed
that it outperforms earlier approaches as well as
other BERT-based language models for a several
different Dutch language tasks. More specifi-
cally, we found that RobBERT significantly out-
performed other BERT-like models when dealing
with smaller datasets, making it a useful resource
for a large range of application domains. We ex-
pect this model to serve as a base for fine-tuning
on other tasks, and thus help foster new models
that can advance results for Dutch language tasks.
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Suárez, Yoann Dupont, Laurent Romary, Éric Ville-
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and Ineke Schuurman. 2013a. The construction of a
500-million-word reference corpus of contemporary
written dutch. In Essential speech and language
technology for Dutch, pages 219–247. Springer.

Nelleke Oostdijk, Martin Reynaert, Véronique Hoste,
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Wornoo. 2020. Leveraging the inherent hierarchy of
vacancy titles for automated job ontology expansion.
In Proceedings of the 6th International Workshop
on Computational Terminology, pages 37–42, Mar-
seille, France. European Language Resources Asso-
ciation.

Gertjan Van Noord, Gosse Bouma, Frank Van Eynde,
Daniel De Kok, Jelmer Van der Linde, Ineke Schuur-
man, Erik Tjong Kim Sang, and Vincent Vandeghin-
ste. 2013. Large scale syntactic annotation of writ-
ten Dutch: Lassy, pages 147–164. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Shijie Wu and Mark Dredze. 2019. Beto, Bentz, Be-
cas: The Surprising Cross-Lingual Effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi,
and Cynthia Dwork. 2013. Learning fair represen-
tations. In International Conference on Machine
Learning, pages 325–333.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cot-
terell, Vicente Ordonez, and Kai-Wei Chang. 2019.
Gender Bias in Contextualized Word Embeddings.
arXiv:1904.03310 [cs].

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://www.aclweb.org/anthology/W19-6204
https://www.aclweb.org/anthology/W19-6204
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1118853.1118877
https://doi.org/10.3115/1118853.1118877
http://arxiv.org/abs/1910.00896
http://arxiv.org/abs/1910.00896
http://arxiv.org/abs/1910.00896
https://www.aclweb.org/anthology/2020.computerm-1.5
https://www.aclweb.org/anthology/2020.computerm-1.5
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
http://arxiv.org/abs/1904.03310

