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Abstract 

Several authors have recently studied Aristotelian diagrams for various 

metatheoretical notions from logic, such as tautology, satisfiability, and the 

Aristotelian relations themselves. However, all these metalogical Aristotelian 

diagrams focus on the semantic (model-theoretical) perspective on logical 

consequence, thus ignoring the complementary, and equally important, 

syntactic (proof-theoretical) perspective. In this paper, I propose an 

explanation for this discrepancy, by arguing that the metalogical square of 

opposition for semantic consequence exhibits a natural analogy to the well-

known square of opposition for the categorical statements from syllogistics, 

but that this analogy breaks down once we move from semantic to syntactic 

consequence. I then show that despite this difficulty, one can indeed construct 

metalogical Aristotelian diagrams from a syntactic perspective, which have 

their own, equally elegant characterization in terms of the categorical 

statements. Finally, I construct several metalogical Aristotelian diagrams that 

incorporate both semantic and syntactic consequence (and their interaction), 

and study how they are influenced by the underlying logical system’s 

soundness and/or completeness. All of this provides further support for the 

methodological/heuristic perspective on Aristotelian diagrams, which holds 

that the main use of these diagrams lies in facilitating analogies and 

comparisons between prima facie unrelated domains of investigation. 
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1 Introduction 

 

Aristotelian diagrams are visual representations of a set of propositions, concepts or 

expressions, and the logical relations holding between them. Without a doubt, the oldest and 

most widely used example is the so-called ‘square of opposition’, but there also exist many 

larger, more complex Aristotelian diagrams. Throughout the history of philosophy and logic, 

distinguished authors such as William of Ockham, Gottfried Leibniz and Gottlob Frege have 

made use of such diagrams to illustrate and explain their theorizing (Kienzler 2013, Lenzen 

2016, Parsons 2017). In 20th century analytic philosophy, Aristotelian diagrams have been used 

in fields as diverse as philosophy of action (Kenny 1963), ethics (Chisholm 1963), philosophy 

of language (Hare 1967), philosophy of law (Hart 1982), epistemology (Sosa 1964) and 

philosophy of religion (Hess 2017). They are also widely used to study families of logics such 

as modal logic (Rini and Cresswell 2012), relevant logic (Beall et al. 2006), deontic logic 

(Barcan Marcus 1966) and probabilistic logic (Pfeifer and Sanfilippo 2017). Furthermore, 

because of the ubiquity of the logical relations that they visualize, Aristotelian diagrams are 

nowadays also frequently used beyond philosophy and logic, in disciplines such as computer 

science (Ciucci et al. 2016), law (Vranes 2006) and linguistics (Ziegeler 2017). 

 

The received view holds that Aristotelian diagrams primarily function as pedagogical devices 

for introducing novice students to logic. However, this view has become untenable, because 

today, most Aristotelian diagrams are no longer found in introductory logic textbooks, but 

rather in research papers and monographs (cf. the examples cited above). An alternative 

explanation for the widespread use of Aristotelian diagrams is based on their methodological 

importance. For example, Yao (2013), Ciucci et al. (2014, 2016) and Dubois et al. (2015) have 

pointed out the heuristic usefulness of Aristotelian diagrams in the theoretical foundations of 

artificial intelligence, emphasizing their role in drawing comparisons across individual 

knowledge representation formalisms and in discovering new notions (by transferring them 

across formalisms). Demey (2017b, 2018a, 2018c) and Demey and Smessaert (2018) generalize 

these remarks to the applicability of Aristotelian diagrams in (drawing comparisons between) 

other areas, such as Russell’s theory of definite descriptions and public announcement logic. 

 

Most of the Aristotelian diagrams that have appeared in the logical literature thus far are situated 

at the object-logical level: the propositions appearing in these diagrams come from the object 

language of the logical system for which the diagram is drawn. However, in recent years there 
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has been a surge of interest in Aristotelian diagrams at the metalogical level, which contain 

statements or notions belonging to the metatheory of a given logical system. For example, 

Béziau (2012, 2013) and Diaconescu (2015) have studied Aristotelian diagrams for metalogical 

notions such as tautology, contradiction, satisfiability, etc. Furthermore, Béziau (2012, 2016), 

Seuren (2014) and Demey and Smessaert (2016) have constructed diagrams that represent the 

Aristotelian relations holding between the Aristotelian relations themselves; Demey and 

Smessaert (2014) and Demey (2018b) have used these diagrams to study the specific language 

used in metalogic from the perspective of (neo-)Gricean pragmatics. Finally, it bears 

emphasizing that these metalogical applications of Aristotelian diagrams have been motivated 

by pedagogical as well as methodological considerations. For example, Demey (2017a) has 

argued that such diagrams can be fruitfully used to teach metalogic to certain types of students, 

while Demey (2018b) has used them to draw a linguistic comparison between object- and 

metalogical terminology.  

 

Despite this recent surge of interest, all metalogical Aristotelian diagrams studied thus far focus 

exclusively on the semantic (model-theoretical) perspective on logic and logical consequence 

(cf. Demey 2017a, Footnote 5). So far, no one seems to have studied metalogical Aristotelian 

diagrams for the complementary, and equally important, syntactic (proof-theoretical) 

perspective on logic and logical consequence.1 This omission is particularly unfortunate for the 

aforementioned methodological/heuristic perspective on Aristotelian diagrams, which 

emphasizes the role of these diagrams in connecting and comparing different frameworks. After 

all, in light of the well-known soundness and completeness theorems, which establish a strong 

connection between syntactic and semantic logical consequence, one should be able to construct 

Aristotelian diagrams for syntactic as well as for semantic logical consequence, and also for 

their interaction. The current asymmetry (there exist many Aristotelian diagrams for semantic 

consequence, but none for syntactic consequence) thus seems to present a counterexample to 

the methodological/heuristic account of the widespread use Aristotelian diagrams.  

 

My main aim in this paper is to address this important lacuna in the literature on (metalogical) 

Aristotelian diagrams. This naturally leads to a sequence of interrelated subgoals. First of all, I 

																																																								
1 Diaconescu (2015) studies several metalogical Aristotelian diagrams for abstract (Tarski-style) consequence 

relations, which transcend the distinction between syntax and semantics. However, he does not deal with any 

Aristotelian diagrams for syntactic consequence in particular. 
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will propose an explanation as to why all research in this area has thus far focused exclusively 

on the semantic perspective. In particular, I will argue that the metalogical square of opposition 

for semantic consequence exhibits a natural analogy to the oldest and most well-known square 

of opposition, viz. that for the categorical statements from Aristotelian syllogistics.2 By 

contrast, this analogy breaks down quite spectacularly once we move from semantic to syntactic 

consequence. The second subgoal is to show that despite this prima facie difficulty, one can 

indeed construct metalogical Aristotelian diagrams from a syntactic perspective. Furthermore, 

these new diagrams have their own, equally theoretically elegant characterization in terms of 

the categorical statements. We thus obtain Aristotelian diagrams for semantic consequence on 

the one hand, and for syntactic consequence on the other (both of which exhibit a strong analogy 

with the categorical statements from syllogistics). The paper’s third and final subgoal is 

therefore to construct metalogical Aristotelian diagrams that incorporate both semantic and 

syntactic consequence (and their interaction), and to study how these diagrams are influenced 

by the underlying logical system’s soundness and/or completeness. 

 

The paper is organized as follows. In Section 2, I briefly rehearse the most important 

metalogical Aristotelian diagram for semantic consequence that has been studied in the 

literature, and argue that it can naturally be characterized in terms of the categorical statements 

from syllogistics. Next, in Section 3, I show that one can construct an analogous metalogical 

Aristotelian diagram for syntactic consequence. I also consider the most straightforward way 

of characterizing this new diagram in terms of the categorical statements, and argue that this 

fails for various reasons. In Section 4, I then propose an alternative way of understanding the 

new diagram for syntactic consequence in terms of the categorical statements, and show that 

this new interpretation is indeed successful. I also discuss why this alternative characterization 

of the diagram for syntactic consequence is arguably the closest possible analogue of the 

characterization of the diagram for semantic consequence. Building on these results, in Section 

5, I construct several metalogical Aristotelian diagrams that incorporate both semantic and 

syntactic consequence (and any potential interaction between them). I also study how the 

soundness and/or completeness of the underlying logical system influence the metalogical 

																																																								
2 Note that this argumentation for an analogy (between the metalogical notion of semantic consequence and the 

categorical statements from syllogistics) is itself perfectly in line with the methodological/heuristic perspective on 

Aristotelian diagrams. 
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properties of these diagrams. Finally, in Section 6, I briefly summarize the paper, and offer 

some suggestions for future work. 

 

 

2 The Metalogical Square of Opposition for Semantic Consequence 

 

In this section I will discuss the metalogical Aristotelian diagram for semantic consequence that 

has been used most widely in the literature. First, however, I will briefly make some basic 

remarks about the Aristotelian relations and Aristotelian diagrams in general. 

 

The Aristotelian relations can be defined on various levels of generality and abstractness. The 

most general definition is formulated in terms of arbitrary Boolean algebras; this definition 

enables us to capture very precisely the similarities and differences between two types of 

Aristotelian relations, viz. those between object-logical notions and those between metalogical 

notions (Demey and Smessaert 2016, Demey 2018b). However, for our current purposes it will 

suffice to define the Aristotelian relations in the usual, more informal way. Two statements are 

said to be: 

 

• contradictory iff they cannot be true together, and 

they cannot be false together; 

• contrary  iff they cannot be true together, but 

they can be false together; 

• subcontrary iff they cannot be false together, but 

they can be true together; 

• in subalternation iff the first statement entails the second one, but 

the second statement does not entail the first one. 

 

An Aristotelian diagram visually represents a finite number of statements, together with the 

Aristotelian relations holding between those statements. The Aristotelian relations are 

visualized according to the code shown in Figure 1. The oldest example of an Aristotelian 

diagram is the square of opposition for the four categorical statements from syllogistics, which 

is also shown in Figure 1. In particular, the A-statement ‘all S are P’ and the O-statement ‘some 

S are not P’ are contradictory; the A-statement ‘all S are P’ and the E-statement ‘no S are P’ 



	 6	

are contrary, and so on.3 Note that we are implicitly assuming the principle of existential import 

– i.e., that there exists at least one S.4 Without this assumption, all Aristotelian relations, except 

for the two contradiction relations (A/O and E/I), would fail to hold, and hence, the classical 

square of opposition for the categorical statements would turn into a ‘degenerate square’ (or ‘X 

of opposition’; Béziau and Payette 2012, pp. 11-12), in which only the two contradiction 

relations are left. This constitutes a prime example of a fact that is well-known in logical 

geometry – i.e. the systematic study of Aristotelian diagrams –, viz. the fact that these diagrams 

are highly sensitive with respect to certain background assumptions (Demey 2015, Demey and 

Smessaert 2018). 

 

<INCLUDE FIGURE 1 HERE> 

<CAPTION: Figure 1: (left) visual code for representing the Aristotelian relations; (right) 

square of opposition for the categorical statements from syllogistics, under the assumption of 

existential import.> 

 

We now turn to the metalogical square of opposition for semantic consequence. To this end, 

we consider a logical system S, with an object language ℒ#, which is supposed to have a 

classical negation (¬) and a model-theoretic semantics. This involves a collection 𝒞# of models5 

and a binary relation ⊨	between the models in 𝒞# and the formulas in ℒ#, where 𝑀 ⊨ 𝜑 means 

that the formula 𝜑 is true in the model 𝑀. We write 𝑀 ⊭ 𝜑 to abbreviate that it is not the case 

that 𝑀 ⊨ 𝜑. The classicality of negation means that 𝑀 ⊨ ¬𝜑 iff 𝑀 ⊭ 𝜑, for every 𝑀 ∈ 𝒞#.  

Furthermore, if Γ is a set of ℒ#-formulas, we write 𝑀 ⊨ Γ to abbreviate that 𝑀 ⊨ 𝛾 for every 

𝛾 ∈ Γ. We can now define the notions of semantic logical consequence and satisfiability in the 

logical system S. Given any set Γ of ℒ#-formulas, and ℒ#-formula 𝜑, we say that: 

 

• 𝜑 is a semantic consequence of Γ (notation: Γ ⊨ 𝜑) iff  

for all models 𝑀 ∈ 𝒞#, it holds that if 𝑀 ⊨ Γ, then 𝑀 ⊨ 𝜑; 

• Γ is satisfiable iff there exists at least one model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ. 

																																																								
3 Throughout this paper I will make use of the well-known mnemonic vowels (A, I, E, O) for the categorical 

statements. These are the first two vowels from each of the Latin verb forms ‘affirmo’ and ‘nego’. 
4 The precise interpretation of the principle of existential import in syllogistics has been a matter of substantial 

scholarly debate (Parsons 2017), but this need not concern us here. 
5 In particular, these models can be first-order models, relational structures, etc. These details do not matter here. 
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Finally, we write Γ ⊭ 𝜑 to abbreviate that it is not the case that Γ ⊨ 𝜑. 

 

Béziau (2012, 2013) and Diaconescu (2015) show that if Γ is satisfiable, then one can construct 

a metalogical square of opposition for semantic consequence, as shown in Figure 2. For 

example, Γ ⊨ 𝜑 is contrary to Γ ⊨ ¬𝜑, since these statements cannot be true together (if 

simultaneously Γ ⊨ 𝜑 and Γ ⊨ ¬𝜑, then Γ would not be satisfiable), but they can be false 

together. Note that in order to establish any of the Aristotelian relations in this square of 

opposition (except for the two contradiction relations), we need to rely on the assumption that	Γ 

is satisfiable. Without this assumption, the metalogical square for semantic consequence would 

thus not be a classical square of opposition, but rather a degenerate square. This can be seen as 

a metalogical manifestation of the sensitivity of Aristotelian diagrams with respect to certain 

background assumptions (cf. supra).  

 

<INCLUDE FIGURE 2 HERE> 

<CAPTION: Figure 2: metalogical square of opposition for semantic consequence, under the 

assumption that Γ is satisfiable.> 

 

It has recently been pointed out that the definitions of the semantic consequence statements 

appearing in Figure 2 can all be interpreted as categorical statements (Demey 2017a). In 

particular, recall that the definition of Γ ⊨ 𝜑 is: 

 

for all models 𝑀 ∈ 𝒞#, it holds that if 𝑀 ⊨ Γ, then 𝑀 ⊨ 𝜑. 

 

This definition can be interpreted as a categorical A-statement: it is of the form ‘all S are P’, 

with the subject term S standing for ‘being a model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ’, and the predicate 

term P standing for ‘being a model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ 𝜑’. Furthermore, consider the 

definition of Γ ⊨ ¬𝜑: 

 

for all models 𝑀 ∈ 𝒞#, it holds that if 𝑀 ⊨ Γ, then 𝑀 ⊨ ¬𝜑. 

 

Since 𝑀 ⊨ ¬𝜑 iff 𝑀 ⊭ 𝜑 (for every 𝑀 ∈ 𝒞#), this can be reformulated as follows: 
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for all models 𝑀 ∈ 𝒞#, it holds that if 𝑀 ⊨ Γ, then 𝑀 ⊭ 𝜑. 

 

The definition of Γ ⊨ ¬𝜑 can thus be interpreted as a categorical E-statement: after a minor 

reformulation, it is of the form ‘all S are not P’ (i.e.: ‘no S are P’), with S and P exactly as 

above. Similarly, the definition of Γ ⊭ 𝜑 is: 

 

there exists at least one model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ and 𝑀 ⊭ 𝜑. 

 

This definition can be interpreted as a categorical O-statement: it is of the form ‘some S are not 

P’, with S and P as above. Finally, consider the definition of Γ ⊭ ¬𝜑:  

 

there exists at least one model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ and 𝑀 ⊭ ¬𝜑. 

 

Since 𝑀 ⊭ ¬𝜑 iff 𝑀 ⊨ 𝜑 (for every 𝑀 ∈ 𝒞#), this can be reformulated as follows: 

 

there exists at least one model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ and 𝑀 ⊨ 𝜑. 

 

The definition of Γ ⊭ ¬𝜑 can thus be interpreted as a categorical I-statement: after a minor 

reformulation, it is of the form ‘some S are P’, with S and P again as above. 

 

The definitions of the four statements regarding semantic consequence can thus be 

characterized in terms of the four categorical statements. The subject and predicate term in these 

categorical statements involve the most essential semantic notion, viz. truth (in a model). This 

characterization establishes a direct link between the squares of opposition in Figures 1 and 2. 

For example, Γ ⊨ 𝜑 and Γ ⊨ ¬𝜑 are contrary to each other in the square of opposition for 

semantic consequence in Figure 2, and the definitions of these two statements can be interpreted 

as A- and E-statements, respectively, which are contrary to each other in the square of 

opposition for the categorical statements in Figure 1. Similarly, Γ ⊭ 𝜑 and Γ ⊭ ¬𝜑 are 

subcontrary to each other in the square in Figure 2, and the definitions of these two statements 

can be interpreted as O- and I-statements, respectively, which are subcontrary to each other in 

the square in Figure 1. Furthermore, this characterization also shows that the assumption that Γ 

is satisfiable (i.e. there exists at least one model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ) is analogous to the 

assumption of existential import in syllogistics (i.e. there exists at least one S). Based on the 
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definitions of its notions, the metalogical square of opposition for semantic consequence thus 

turns out to be perfectly analogous to the most widely known square of opposition in the 

literature, viz. that for the categorical statements from syllogistics.  

 

It should be pointed out that this characterization of semantic consequence in terms of 

categorical statements crucially relies on the fact that we can shift negation between the object- 

and the metalogical level (𝑀 ⊨ ¬𝜑 iff 𝑀 ⊭ 𝜑). This is essential for reformulating the 

definitions of Γ ⊨ ¬𝜑 and Γ ⊭ ¬𝜑 from statements about models that make the negated 

formula ¬𝜑 true or not into statements about models that make the formula 𝜑 itself true or not. 

The latter can then be interpreted as E- and I-statements, on a par with the A- and O-statements 

that correspond to Γ ⊨ 𝜑 and Γ ⊭ 𝜑, respectively. 

 

Once the analogy between semantic consequence and the categorical statements is in place, it 

can fruitfully be used to understand a certain phenomenon on one side of the analogy in terms 

of the corresponding phenomenon on the other side of the analogy. For example, in Demey 

(2017a) this analogy is used to explain that the entailment from Γ ⊨ 𝜑 to Γ ⊭ ¬𝜑 crucially 

depends on the assumption that Γ be satisfiable, by drawing a comparison to the entailment 

from the A- to the I-statement and its dependence on the assumption of existential import. Such 

an explanation can be very helpful, for example for philosophers who are thoroughly familiar 

with syllogistics, but not with metalogic. These observations are perfectly in line with the 

methodological/heuristic perspective on Aristotelian diagrams (also recall Footnote 2). 

 

 

3 The Metalogical Square of Opposition for Syntactic Consequence 

	
I will now introduce a metalogical square of opposition for syntactic consequence. To this end, 

we assume that our logical system S also has a natural deduction proof system 𝒟#, which allows 

us to construct derivations that lead from (sets of) ℒ#-formulas to other ℒ#-formulas.6 We can 

now define the notions of syntactic logical consequence and consistency in S. Given any set Γ 

of ℒ#-formulas, and ℒ#-formula 𝜑, we say that: 

 

																																																								
6 In particular, the system can be a Gentzen-style or a Fitch-style natural deduction system. Again, these details do 

not matter here. (Also see Footnote 5.) 
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• 𝜑 is a syntactic consequence of Γ (notation: Γ ⊢ 𝜑) iff  

there exists at least one derivation in 𝒟# that starts from formulas in Γ and ends in 𝜑; 

• Γ is consistent iff there does not exist a formula 𝛾 ∈ ℒ# such that Γ ⊢ 𝛾 and Γ ⊢ ¬𝛾; 

• Γ is consistent with 𝜑 iff the set Γ ∪ {𝜑} is consistent; 

• Γ is a maximal consistent set (MCS) iff Γ is consistent and for all formulas 𝛾 ∈ ℒ#: 

if 𝛾 ∉ Γ then Γ ∪ {𝛾} is not consistent. 

 

We will write Γ ⊬ 𝜑 to abbreviate that it is not the case that Γ ⊢ 𝜑. Furthermore, we will assume 

that the proof system 𝒟# has the property that if Γ ∪ {𝜑} is not consistent (i.e., if Γ is not 

consistent with 𝜑), then Γ ⊢ ¬𝜑; this will play an important role in (the proofs of) Theorems 1 

and 2 in Section 4. Classical natural deduction proof systems indeed have this property (as well 

as its converse). 

 

Under ideal circumstances, semantic and syntactic consequence should be closely related to 

each other – after all, both are meant to capture a single, informal notion of logical consequence. 

Given the square of opposition for semantic consequence from Section 2, one would therefore 

expect that there exists an analogous square of opposition for syntactic consequence, as shown 

in Figure 3. It is easy to prove that if Γ is consistent, then all the Aristotelian relations in Figure 

3 indeed hold, i.e. we indeed obtain a square of opposition for syntactic consequence. For 

example, Γ ⊢ 𝜑 is contrary to Γ ⊢ ¬𝜑, since these statements cannot be true together (if 

simultaneously Γ ⊢ 𝜑 and Γ ⊢ ¬𝜑, then Γ would not be consistent), but they can be false 

together. Note that in order to establish any of the Aristotelian relations in this square of 

opposition (except for the two contradiction relations), we need to rely on the assumption that	Γ 

is consistent. Without this assumption, the metalogical square for syntactic consequence would 

not be a classical square of opposition, but rather a degenerate square. This can be seen as yet 

another metalogical manifestation of the sensitivity of Aristotelian diagrams with respect to 

certain background assumptions (cf. supra).  

 

<INCLUDE FIGURE 3 HERE> 

<CAPTION: Figure 3: metalogical square of opposition for syntactic consequence, under the 

assumption that Γ is consistent.> 
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Let us now have a closer look at the definitions of the syntactic consequence statements that 

appear in Figure 3. First of all, recall that the definition of Γ ⊢ 𝜑 is: 

 

there exists at least one derivation in 𝒟# that starts from formulas in Γ and ends in 𝜑. 

 

Completely analogously, the definition of Γ ⊢ ¬𝜑 is: 

 

there exists at least one derivation in 𝒟# that starts from formulas in Γ and ends in ¬𝜑. 

 

Furthermore, here are three equivalent formulations of the definition of Γ ⊬ 𝜑:  

 

there does not exist a derivation in 𝒟# that starts from formulas in Γ and ends in 𝜑, 

no derivation in 𝒟# that starts from formulas in Γ, ends in 𝜑, 

all derivations in 𝒟# that start from formulas in Γ, do not end in 𝜑. 

 

Finally, consider three equivalent formulations of the definition of Γ ⊬ ¬𝜑: 

 

there does not exist a derivation in 𝒟# that starts from formulas in Γ and ends in ¬𝜑, 

no derivation in 𝒟# that starts from formulas in Γ, ends in ¬𝜑, 

all derivations in 𝒟# that start from formulas in Γ, do not end in ¬𝜑. 

 

If we try to characterize these definitions of the four syntactic consequence statements in terms 

of the four categorical statements from syllogistics, we immediately encounter several 

problems. First of all, there is a ‘quantificational mismatch’. For example, since Γ ⊢ 𝜑 and Γ ⊢

¬𝜑 are contraries in the square of opposition for syntactic consequence in Figure 3, we should 

expect their definitions to correspond to the universally quantified A- and E-statements, which 

are contraries in the square of opposition for the categorical statements in Figure 1. However, 

we have just seen that the definitions of Γ ⊢ 𝜑 and Γ ⊢ ¬𝜑 involve an existential, rather than 

a universal quantification (‘there exists at least one derivation…’). Similarly, since Γ ⊬ 𝜑 and 

Γ ⊬ ¬𝜑 are subcontraries in the square in Figure 3, we should expect their definitions to 

correspond to the existentially quantified O- and I-statements, which are subcontraries in the 
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square in Figure 1. However, we have just seen that the definitions of Γ ⊬ 𝜑 and Γ ⊬ ¬𝜑 

involve a universal, rather than an existential quantification (‘all derivations…’).7   

 

This quantificational mismatch can also be discerned in the assumption that is needed to prove 

that the square is indeed a classical square of opposition (rather than a degenerate square). In 

the case of the categorical statements in Figure 1, this is the assumption of existential import, 

which, as the name already suggests, is an existential claim (‘there exists at least one S’). In the 

case of the semantic consequence statements in Figure 2, the assumption concerns the 

satisfiability of Γ, which is also an existential claim (‘there exists at least one model 𝑀…’). By 

contrast, in the case of the syntactic consequence statements in Figure 3, the assumption 

concerns the consistency of Γ, which is a universal, rather than an existential claim (‘there does 

not exist a formula 𝛾…’).  

 

The final, and perhaps most serious problem, concerns the behavior of negation. Regardless of 

their quantificational status, the definitions of all four syntactic consequence statements share 

the same subject term, viz. ‘being a derivation in 𝒟# that starts from formulas in Γ’. However, 

they do not share the same predicate term: the predicate term in the definitions of Γ ⊢ 𝜑 and 

Γ ⊬ 𝜑 is ‘being a derivation in 𝒟# that ends in 𝜑’, whereas the predicate term in the definitions 

of Γ ⊢ ¬𝜑 and Γ ⊬ ¬𝜑 is ‘being a derivation in 𝒟# that ends in ¬𝜑’. The latter predicate term 

cannot be reduced to the former, since ending in ¬𝜑 is strictly stronger than not ending in 𝜑. 

(If a derivation ends in ¬𝜑, it trivially does not end in 𝜑; however, the converse does not hold: 

a derivation might end in some third formula 𝜓, in which case it does not in 𝜑, and not in ¬𝜑 

either.) This should be contrasted with the definitions of the semantic consequence statements 

in Section 2, which do share a single (subject term and) predicate term, since 𝑀 ⊨ ¬𝜑 is indeed 

equivalent to 𝑀 ⊭ 𝜑. 

 

																																																								
7 The problematic nature of this quantifier mismatch should not be exaggerated. Ultimately, Γ ⊢ 𝜑 and Γ ⊢ ¬𝜑 

are effectively contrary to each other, regardless of whether their definitions can be characterized as universal (A- 

and E-) statements. In the literature there exist other, object-logical examples of squares of opposition that exhibit 

a similar quantifier mismatch. For example, in the square of opposition for public announcement logic, the 

formulas <!p>q and <!p>¬q are contrary to each other, although the semantics of these formulas involves an 

existential, rather than a universal quantification (over public announcements of p) (Demey 2012, 2017b).  
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The overall argument that has been developed in this section and the previous one, can now be 

summarized as follows: 

 

1. Both semantic and syntactic consequence give rise to a metalogical square of 

opposition (under analogous metalogical conditions, viz. the satisfiability and 

consistency of Γ). 

2. The definitions of the four semantic consequence statements can straightforwardly 

be interpreted in terms of the four categorical statements from syllogistics. Hence, 

the square of opposition for semantic consequence in Figure 2 (and its assumption 

of the satisfiability of Γ) exhibits a strong analogy to the square of opposition for the 

categorical statements in Figure 1 (and its assumption of existential import). 

3. By contrast, the definitions of the four syntactic consequence statements cannot be 

interpreted in terms of the four categorical statements in the same straightforward 

fashion. Hence, the square of opposition for syntactic consequence in Figure 3 (and 

its assumption of the consistency of Γ) does not exhibit a strong analogy to the square 

of opposition for the categorical statements in Figure 1 (and its assumption of 

existential import). 

 

Taking into consideration that the square of opposition for the categorical statements from 

syllogistics is by far the oldest and most well-known Aristotelian diagram, and thus serves as a 

kind of ‘golden standard’, I would like to suggest that this discrepancy between the semantic 

consequence square and the syntactic consequence square might be precisely the reason why 

the former has been studied quite frequently in the recent literature on metalogical Aristotelian 

diagrams, whereas the latter has not been studied at all thus far.  

 

Finally, it bears emphasizing that this discrepancy between the semantic consequence square 

and the syntactic consequence square is not entirely undesirable. Consider, for example, the 

quantificational aspects of the discrepancy: the definition of Γ ⊨ 𝜑	is a universal claim, while 

the definition of Γ ⊢ 𝜑 is an existential claim. As anyone who has ever taught metalogic will 

know, this quantificational mismatch can also be highly beneficial. After all, proving that Γ ⊢

𝜑 requires constructing just a single derivation in 𝒟#, and this will often be easier than proving 

that Γ ⊨ 𝜑, which requires considering all models in 𝒞#. Vice versa, proving that Γ ⊭ 𝜑 

requires constructing just a single (counter)model, and this will often be easier than proving 
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that Γ ⊬ 𝜑, which requires considering all possible derivations. From this perspective, the 

quantificational mismatch between semantic and syntactic consequence is thus an advantage, 

rather than a disadvantage. Nevertheless, for our current purposes – viz. studying the 

Aristotelian diagrams that semantic and syntactic consequence give rise to – it remains highly 

desirable to obtain a sound characterization of both semantic and syntactic consequence in 

terms of the categorical statements.  

 

 

4 An Alternative Characterization of the Metalogical Square for Syntactic Consequence 

 

In the previous section I have argued that although the syntactic consequence statements 

constitute a metalogical square of opposition, their definitions cannot straightforwardly be 

understood in terms of the categorical statements. In this section I will propose an alternative 

characterization of the syntactic consequence statements, and show that it does enable a direct 

analogy to the categorical statements.8 We therefore consider the following: 

 

Theorem 1. Given any set Γ of ℒ#-formulas, and ℒ#-formula 𝜑, it holds that: 

 

1) Γ ⊢ 𝜑   iff  all MCS Δ ⊇ Γ contain 𝜑; 

2) Γ ⊢ ¬𝜑   iff  no MCS Δ ⊇ Γ contain 𝜑; 

3) Γ ⊬ 𝜑   iff  some MCS Δ ⊇ Γ do not contain 𝜑; 

4) Γ ⊬ ¬𝜑   iff  some MCS Δ ⊇ Γ contain 𝜑; 

5) Γ is consistent  iff there exists at least one MCS Δ ⊇ Γ. 

 

Proof. Item 1, left to right. Consider an arbitrary MCS Δ ⊇ Γ and suppose, toward a 

contradiction, that Δ does not contain	𝜑. By the maximality of Δ, it follows that Δ ∪ {𝜑} is not 

consistent, and hence Δ ⊢ ¬𝜑. Furthermore, since Γ ⊢ 𝜑 and Γ ⊆ Δ, we also have Δ ⊢ 𝜑. This 

violates the consistency of Δ. 

 

Item 1, right to left is proved by contraposition, so we assume that Γ ⊬ 𝜑, and show that there 

exists an MCS Δ ⊇ Γ that does not contain 𝜑. Consider the set Γ ∪ {¬𝜑}. Since Γ ⊬ 𝜑, this set 

is consistent, so by Lindenbaum’s lemma there exists an MCS Δ ⊇ Γ ∪ {¬𝜑}. It now trivially 

																																																								
8 Thanks to *** 
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holds that Δ ⊇ Γ; furthermore, since ¬𝜑 ∈ Δ	and Δ is consistent, it follows that Δ does not 

contain 𝜑. 

 

Item 2, left to right. Consider an arbitrary MCS Δ ⊇ Γ and suppose, toward a contradiction, that 

Δ contains 𝜑. It immediately follows that Δ ⊢ 𝜑. Furthermore, since Γ ⊢ ¬𝜑 and Γ ⊆ Δ, we 

also have Δ ⊢ ¬𝜑. This violates the consistency of Δ.  

 

Item 2, right to left is again proved by contraposition, so we assume that Γ ⊬ ¬𝜑, and show 

that there exists an MCS Δ ⊇ Γ that contains 𝜑. Consider the set Γ ∪ {𝜑}. Since Γ ⊬ ¬𝜑, this 

set is consistent, so by Lindenbaum’s lemma there exists an MCS Δ ⊇ Γ ∪ {𝜑}. It now trivially 

holds that Δ ⊇ Γ and that 𝜑 ∈ Δ. 

 

Items 3 and 4 follow from items 1 and 2, respectively (after all, if two statements A and B are 

equivalent to each other, then their negations ¬A and ¬B are also equivalent to each other). 

 

Item 5, left to right is merely an expression of Lindenbaum’s lemma. 

 

Item 5, right to left is proved by contraposition, so we assume that Γ is not consistent, and show 

that there does not exist an MCS Δ ⊇ Γ. Since Γ is not consistent, there exists a formula 𝛾 such 

that Γ ⊢ 𝛾 and Γ ⊢ ¬𝛾; hence, for every Δ ⊇ Γ it follows that also Δ ⊢ 𝛾 and Δ ⊢ ¬𝛾, so Δ is 

not consistent, and thus a fortiori not an MCS. 

QED 

 

The first four items of Theorem 1 provide characterizations of the syntactic consequence 

statements that correspond to the categorical statements, which all have the same subject term, 

viz. ‘being an MCS Δ ⊆ ℒ# such that Γ ⊆ Δ’, as well as the same predicate term, viz. ‘being an 

MCS Δ ⊆ ℒ# such that 𝜑 ∈ Δ’.  

 

This correspondence does not suffer from a quantifier mismatch or problems regarding negation 

(cf. Section 3). For example, Γ ⊢ 𝜑 and Γ ⊢ ¬𝜑 are contraries in the square of opposition for 

syntactic consequence in Figure 3, and the first two items of Theorem 1 show that these 

statements correspond to the universally quantified A- and E-statements, respectively, which 

are contraries in the square of opposition for the categorical statements in Figure 1. Similarly, 
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Γ ⊬ 𝜑 and Γ ⊬ ¬𝜑 are subcontraries in the square in Figure 3, and items 3 and 4 of the theorem 

show that these statements correspond to the existentially quantified O- and I-statements, 

respectively, which are subcontraries in the square in Figure 1. Furthermore, consider the 

assumption that is needed to prove that the square is indeed a classical square of opposition 

(rather than a degenerate square). In the case of the syntactic consequence statements, this is 

the assumption that Γ is consistent, and the theorem’s fifth item provides a characterization of 

this assumption as an existential claim, which is completely analogous to the existential import 

assumption in the case of the categorical statements. Finally, note that there is no problem with 

negation, as all four characterizations share the same predicate term, viz. ‘being an MCS Δ ⊆

ℒ# such that 𝜑 ∈ Δ’, including the characterizations of the syntactic consequence statements 

that involve the negated formula ¬𝜑 (cf. items 2 and 4 of Theorem 1). 

 

Theorem 1 thus provides a successful characterization of the syntactic consequence statements 

in terms of the categorical statements. Hence, just like the square for semantic consequence in 

Figure 2, the square for syntactic consequence in Figure 3 also closely corresponds to the well-

known square for the categorical statements in Figure 1. However, the former correspondence 

is directly based on the definition of semantic consequence (cf. Section 2), whereas the latter 

correspondence is not based on the definition of syntactic consequence (cf. Section 3), but rather 

on the alternative characterization provided by Theorem 1 (cf. this section).9  

 

Nevertheless, this alternative characterization of syntactic consequence can reasonably be 

understood as the closest possible analogue of the definition of semantic consequence. To see 

this, recall that the definition of semantic consequence involves categorical statements with 

subject term ‘being a model 𝑀 ∈ 𝒞# such that 𝑀 ⊨ Γ’ and predicate term ‘being a model 

𝑀 ∈ 𝒞# such that 𝑀 ⊨ 𝜑’, which are based on the core semantic notion of truth (in a model). 

The theorem’s alternative characterization of syntactic consequence involves categorical 

statements with subject term ‘being an MCS Δ ⊆ ℒ# such that Γ ⊆ Δ’ and predicate term ‘being 

an MCS Δ ⊆ ℒ# such that 𝜑 ∈ Δ’, which are based on the corresponding syntactic notion of 

membership (in a maximal consistent set). More specifically, there exists a direct 

																																																								
9 Furthermore, Theorem 1 cannot be used to provide a definition of syntactic consequence, since that would clearly 

result in circularity: the theorem characterizes syntactic consequence in terms of MCS, and thus of consistency, 

but as we have seen in the beginning of Section 3, the latter notion is itself defined in terms of syntactic 

consequence. 
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correspondence between maximal consistent sets (that extend Γ) and models (that make all 

formulas in Γ true): one can easily show that (i) if 𝑀 is a model, then Δ: ≔ 𝜑 ∈ ℒ# ∶ 𝑀 ⊨ 𝜑  

is an MCS, and furthermore, (ii) if 𝑀 ⊨ 	Γ, then Γ ⊆ Δ:. (Note that Henkin-style completeness 

proofs are based exactly on the fact that Γ ⊢ 𝜑 iff for all MCS Δ ⊇ Γ it holds that 𝜑 ∈ Δ.) 

Furthermore, the close correspondence between membership (in a maximal consistent set Δ) 

and truth (in a model 𝑀) can also be observed in the behavior of negation with respect to both 

notions: we have ¬𝜑 ∈ Δ iff 𝜑 ∉ Δ, which is the direct analogue of 𝑀 ⊨ ¬𝜑 iff 𝑀 ⊭ 𝜑. 

 

Now that we have established a sound analogy between syntactic consequence and the 

categorical statements, it can again be fruitfully used to understand a certain phenomenon on 

one side of the analogy in terms of another phenomenon on the other side of the analogy. 

Consider, for example, the fact that even though Γ ⊢ 𝜑 ∨ ¬𝜑 for all Γ and 𝜑, it is not always 

the case that Γ ⊢ 𝜑 or Γ ⊢ ¬𝜑, which is notoriously difficult for novice logicians to grasp.10 

However, given the analogy between these two metalogical statements and the categorical A- 

and E-statements, this fact can straightforwardly be explained. After all, since the A- and E-

statements, and thus also the two corresponding metalogical statements, are contraries, they 

cannot be true together, but they can be false together. The latter means exactly that it can 

happen that neither Γ ⊢ 𝜑 nor Γ ⊢ ¬𝜑. This kind of explanation can be very helpful, for 

example for philosophers who are thoroughly familiar with syllogistics and the Aristotelian 

relations, but not with metalogic. Again, note that these observations are perfectly in line with 

the methodological/heuristic perspective on Aristotelian diagrams. 

 

To finish this section, I would like to emphasize that the analogy between syntactic consequence 

and the categorical statements described above is by no means unique. Theorem 1 provides an 

interpretation of the syntactic consequence statements in terms of the categorical statements, 

which does not suffer from a quantifier mismatch or problems regarding negation. However, 

one can define further correspondences, which do not suffer from those problems either. For 

example, instead of working with maximal consistent sets that extend Γ (as in Theorem 1), one 

can also work with all consistent sets that extend Γ. This idea is made fully precise in Theorem 

2 below. Despite the existence of such further interpretations of the syntactic consequence 

statements in terms of the categorical statements, I do believe that the interpretation described 

above (in Theorem 1) is the most ‘natural’ one, because of the aforementioned correspondence 

																																																								
10 The sets Γ for which it does hold that Γ ⊢ 𝜑 or Γ ⊢ ¬𝜑 for all 𝜑, are called deductively complete. 
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between (membership in) a maximal consistent set (that extends Γ) on the one hand, and (truth 

in) a model (that makes all formulas of Γ true) on the other hand. 
 

Theorem 2. Given any set Γ of ℒ#-formulas, and ℒ#-formula 𝜑, it holds that: 

 

1) Γ ⊢ 𝜑   iff  all consistent Γ′ ⊇ Γ are consistent with 𝜑; 

2) Γ ⊢ ¬𝜑   iff  no consistent Γ′ ⊇ Γ are consistent with 𝜑; 

3) Γ ⊬ 𝜑   iff  some consistent Γ′ ⊇ Γ are not consistent with 𝜑; 

4) Γ ⊬ ¬𝜑   iff  some consistent Γ′ ⊇ Γ are consistent with 𝜑; 

5) Γ is consistent  iff there exists at least one consistent Γ? ⊇ Γ. 

 

Proof. Item 1, left to right. Consider an arbitrary consistent Γ′ ⊇ Γ and suppose, toward a 

contradiction, that Γ′ is not consistent with 𝜑. Hence Γ? ⊢ ¬𝜑. Furthermore, since Γ ⊢ 𝜑 and 

Γ ⊆ Γ′, we also have Γ′ ⊢ 𝜑. This violates the consistency of Γ′. 

 

Item 1, right to left is proved by contraposition, so we assume that Γ ⊬ 𝜑, and show that there 

exists a consistent Γ′ ⊇ Γ that is not consistent with 𝜑. Consider Γ? ≔ 	Γ ∪ {¬𝜑}. It trivially 

holds that Γ′ ⊇ Γ; furthermore, Γ′ is consistent because Γ ⊬ 𝜑; finally, Γ′ is not consistent with 

𝜑, since the set Γ′ ∪ 𝜑 = Γ ∪ {¬𝜑} ∪ 𝜑  is trivially not consistent. 

 

Item 2, left to right. Consider an arbitrary consistent Γ′ ⊇ Γ; we show that Γ′ is not consistent 

with 𝜑. Since Γ ⊢ ¬𝜑 and Γ ⊆ Γ′ ⊆ Γ′ ∪ 𝜑 , it follows that Γ′ ∪ 𝜑 ⊢ ¬𝜑. But trivially also 

Γ′ ∪ 𝜑 ⊢ 𝜑, and hence Γ′ ∪ 𝜑  is not consistent, i.e. Γ′ is not consistent with 𝜑. 

 

Item 2, right to left is again proved by contraposition, so we assume Γ ⊬ ¬𝜑, and show that 

there exists a consistent Γ′ ⊇ Γ that is consistent with 𝜑, viz. Γ itself. After all, since Γ ⊬ ¬𝜑 it 

follows that Γ is consistent with 𝜑, and thus, a fortiori, that Γ itself is consistent. 

 

Items 3 and 4 again follow from items 1 and 2, respectively. 

 

Item 5, left to right. If Γ is consistent, there trivially exists at least one consistent Γ? ⊇ Γ, viz. Γ 

itself. 
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Item 5, right to left is proved by contraposition, so we assume that Γ is not consistent, and show 

that there does not exist a consistent Γ? ⊇ Γ. Since Γ is not consistent, there exists a formula 𝛾 

such that Γ ⊢ 𝛾 and Γ ⊢ ¬𝛾; hence, for every Γ? ⊇ Γ it follows that also Γ′ ⊢ 𝛾 and Γ′ ⊢ ¬𝛾, 

and thus Γ′ is not consistent either. 

QED 

 

 

5 The Role of Soundness and Completeness 

 

In the previous sections I have focused exclusively on squares of opposition for semantic and 

syntactic consequence. However, in the literature we also find many larger, more complex 

metalogical Aristotelian diagrams (see especially Demey and Smessaert 2016 for a 

comprehensive overview). For example, Béziau (2012, 2013) and Diaconescu (2015) show that 

the square of opposition for semantic consequence (cf. Figure 2) can be extended to a so-called 

Jacoby-Sesmat-Blanché (JSB) hexagon of opposition, by adding two further semantic 

consequence statements, viz. the disjunction of Γ ⊨ 𝜑 and Γ ⊨ ¬𝜑 (the syntactic counterpart 

of which is used in the definition of deductively complete sets; cf. Footnote 10), and the 

conjunction of Γ ⊭ 𝜑 and Γ ⊭ ¬𝜑. It is straightforward to show that the square of opposition 

for syntactic consequence (cf. Figure 3) can also be extended to a JSB hexagon, in a completely 

analogous fashion. However, in this section I want to focus on another type of metalogical 

Aristotelian diagrams, in which the semantic and syntactic consequence statements appear 

simultaneously, and which are thus also able to capture the interaction between these two types 

of statements. The specific details of these diagrams depend on whether we assume the logical 

system S to be sound and/or complete – or more precisely: whether we assume the proof system 

𝒟# to be sound and/or complete with respect to the class of models 𝒞#. I will now systematically 

discuss each of the four possible combinations of soundness/completeness assumptions, and 

the Aristotelian diagram that they give rise to.11 

																																																								
11 Many logicians have a rather ‘asymmetric’ perspective on soundness and completeness: soundness is usually 

taken to be a kind of minimal criterion that has to be met by any serious candidate proof system, while failure of 

completeness is seen as much more tolerable. However, based on certain technical results on so-called Scott 

consequence relations, one can argue for a more ‘symmetric’ perspective, which treats soundness and 

completeness more on a par with each other (Scott 1971, 1974, Brown 2015). In particular, a logical system that 

is complete but not sound is deemed equally worthy of attention as a system that is sound but not complete. Thanks 

to an anonymous reviewer for some interesting remarks about this issue. 
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First of all, let’s start by assuming neither that the logical system S is sound, nor that it is 

complete. In this situation, putting the four semantic consequence statements and the four 

syntactic consequence statements together does not yield an interesting new Aristotelian 

diagram. After all, we will have a square of opposition for semantic consequence (under the 

assumption of satisfiability of Γ; cf. Section 2) and a square of opposition for syntactic 

consequence (under the assumption of consistency of Γ; cf. Section 3), but because we assume 

neither soundness nor completeness, these two squares will not enter into any interaction with 

each other. In particular, there will not be any Aristotelian relation holding between a semantic 

consequence statement on the one hand, and a syntactic consequence statement on the other.  

 

Secondly, let’s assume that the logical system S is sound, but not necessarily complete. Based 

on this assumption (along with the assumptions regarding the satisfiability and consistency of 

Γ from Sections 2 and 3), one can construct an octagon of opposition for semantic and syntactic 

consequence as shown in Figure 4. This type of Aristotelian diagram is sometimes called a 

‘Lenzen octagon’, since (a visual variant of) it was first studied by Lenzen (2012). 

 

<INCLUDE FIGURE 4 HERE> 

<CAPTION: Figure 4: metalogical octagon of opposition for semantic and syntactic 

consequence, under the assumptions that Γ is satisfiable and consistent, and that S is sound.> 

 

This octagon incorporates (a horizontally stretched version of) the square for semantic 

consequence, as well as (a vertically stretched version of) the square for syntactic consequence 

as subdiagrams. Furthermore, it also shows the Aristotelian relations capturing the interaction 

between these two squares. For example, there is a subalternation from Γ ⊢ 𝜑 to Γ ⊨ 𝜑: because 

of soundness, Γ ⊢ 𝜑 indeed entails Γ ⊨ 𝜑, but since the proof system is not assumed to be 

complete, the other direction does not generally hold. The same considerations also show that 

there is a subalternation from Γ ⊭ 𝜑 to Γ ⊬ 𝜑, that Γ ⊢ 𝜑 is contrary to Γ ⊭ 𝜑, and that Γ ⊨ 𝜑 

is subcontrary to Γ ⊬ 𝜑. Furthermore, by composing the subalternation from Γ ⊢ 𝜑 to Γ ⊨ 𝜑 

with the subalternation from Γ ⊨ 𝜑 to Γ ⊭ ¬𝜑 in the semantic square, we also obtain the 

subalternation from Γ ⊢ 𝜑 to Γ ⊭ ¬𝜑. All the Aristotelian relations shown in Figure 4 can 

straightforwardly be established in this manner. 
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The Lenzen octagon in Figure 4 can thus be partitioned into three parts, each of which depends 

on its own assumption: (i) the square of opposition for semantic consequence, which depends 

on the satisfiability of Γ, (ii) the square of opposition for syntactic consequence, which depends 

on the consistency of Γ, and (iii) the Aristotelian relations capturing the interaction between 

these first two squares, which depend on the soundness of S. (Note that these interaction 

relations can themselves be clustered into four additional squares of opposition.) This 

Aristotelian diagram is thus a compact yet systematic visualization of the 8 metalogical 

statements about semantic and syntactic consequence, and the logical relations holding between 

them under the assumption of soundness. Such a diagram can be very helpful for those who are 

new to metalogic in general, and to notions such as satisfiability, consistency and soundness in 

particular. 

 

Thirdly, let’s now switch to the ‘symmetric’ situation, and assume that the logical system S is 

complete, but not necessarily sound (recall Footnote 11). Based on this assumption (along with 

the assumptions regarding the satisfiability and consistency of Γ from Sections 2 and 3), one 

can again construct a Lenzen octagon for semantic and syntactic consequence, as shown in 

Figure 5. 

 

<INCLUDE FIGURE 5 HERE> 

<CAPTION: Figure 5: metalogical octagon of opposition for semantic and syntactic 

consequence, under the assumptions that Γ is satisfiable and consistent, and that S is complete.> 

 

This Lenzen octagon can again be partitioned into three parts, each of which depends on its 

own assumption: (i) the square of opposition for semantic consequence (now vertically 

stretched), which depends on the satisfiability of Γ, (ii) the square of opposition for syntactic 

consequence (now horizontally stretched), which depends on the consistency of Γ, and (iii) the 

Aristotelian relations capturing the interaction between these first two squares, which depend 

on the completeness of S. (Again, note that these interaction relations can themselves be 

clustered into four additional squares of opposition.) 

 

Fourthly, let’s examine what happens if we assume that S is sound and complete (while still 

maintaining the assumptions regarding the satisfiability and consistency of Γ). Obviously, this 

joint assumption will not have any impact on the squares of opposition for semantic and 
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syntactic consequence separately, but only on their interaction. However, it influences the 

Aristotelian relations capturing this interaction in a highly heterogeneous fashion.  

 

On the one hand, consider the effects on the first Lenzen octagon, which only assumed 

soundness (cf. Figure 4). The subalternation from Γ ⊢ 𝜑 to Γ ⊨ 𝜑 in that octagon will turn into 

an equivalence: because we now assume soundness and completeness, these two statements 

entail each other. (The same consideration also shows that the octagon’s contrariety between 

Γ ⊢ 𝜑 and Γ ⊭ 𝜑 now turns into a contradiction.) By contrast, the octagon’s subalternation 

from Γ ⊢ 𝜑 to Γ ⊭ ¬𝜑 remains a subalternation: even under the additional assumption of 

completeness, Γ ⊭ ¬𝜑 still does not entail Γ ⊢ 𝜑. (The same consideration also shows that the 

octagon’s contrariety between Γ ⊢ 𝜑 and Γ ⊨ ¬𝜑 remains a contrariety.)  

 

On the other hand, consider the effects on the second Lenzen octagon, which only assumed 

completeness (cf. Figure 5). The subalternation from Γ ⊨ 𝜑 to Γ ⊢ 𝜑 in this second octagon 

will turn into an equivalence: because we now assume completeness and soundness, these two 

statements entail each other. (The same consideration also shows that the octagon’s contrariety 

between Γ ⊨ 𝜑 and Γ ⊬ 𝜑 now turns into a contradiction.) By contrast, the octagon’s 

subalternation from Γ ⊨ 𝜑 to Γ ⊬ ¬𝜑 remains a subalternation: even under the additional 

assumption of soundness, Γ ⊬ ¬𝜑 still does not entail Γ ⊨ 𝜑. (The same consideration also 

shows that the octagon’s contrariety between Γ ⊨ 𝜑 and Γ ⊢ ¬𝜑 remains a contrariety.)  

 

<INCLUDE FIGURE 6 HERE> 

<CAPTION: Figure 6: metalogical octagon of opposition for semantic and syntactic 

consequence, under the assumptions that Γ is satisfiable and consistent, and that S is sound and 

complete.> 

 

All these changes can be summarized as follows: under the joint assumption of soundness and 

completeness, the Lenzen octagons from Figures 4 and 5 both turn into a new octagon of 

opposition, as shown in Figure 6. (Note that bidirectional arrows are used to visualize mutual 

entailment, i.e. equivalence, between statements.) Once again, this octagon can be partitioned 

into three parts, each of which depends on its own assumption: (i) the (horizontally stretched) 

square of opposition for semantic consequence, which depends on the satisfiability of Γ, (ii) the 

(vertically stretched) square of opposition for syntactic consequence, which  depends on the 
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consistency of Γ, and (iii) the mutual entailments and Aristotelian relations capturing the 

interaction between these first two squares, which depend on the soundness and completeness 

of S. 	

 

The octagon of opposition in Figure 6 visualizes each of the eight metalogical statements by 

means of a separate vertex in the diagram, despite these statements being pairwise equivalent 

to each other (under the joint assumption of soundness and completeness). This visualization 

strategy is not entirely in line with common practice in philosophical logic: most Aristotelian 

diagrams that appear in the literature do not contain equivalent statements at all (cf. Figures 1 

– 5 in this paper as well), but among those diagrams that do contain equivalent statements, the 

overwhelming majority visualizes equivalent statements by assigning them to the same 

vertex.12 If we apply this more canonical visualization strategy to the octagon in Figure 6, then 

this octagon ‘collapses’ into a square of opposition, as shown in Figure 7. Each vertex of this 

square is occupied by two equivalent metalogical statements, and each Aristotelian relation 

between two vertices holds between either formula in one vertex and either formula in the other. 

Essentially, the square of opposition in Figure 7 can be seen as the result of superimposing the 

squares for semantic consequence (Figure 2) and for syntactic consequence (Figure 3). Both 

the octagon in Figure 6 and its ‘collapsed’ square version in Figure 7 can again be very helpful 

for those who are new to metalogic in general, and to notions such as soundness and 

completeness in particular. 

 

<INCLUDE FIGURE 7 HERE> 

<CAPTION: Figure 7: metalogical square of opposition for semantic and syntactic 

consequence, under the assumptions that Γ is satisfiable and consistent, and that S is sound and 

complete.> 

 

In Sections 2 and 3, I already pointed out that Aristotelian diagrams are sensitive with respect 

to certain background assumptions: adding or dropping the assumption that Γ is 

satisfiable/consistent makes the Aristotelian diagrams for semantic/syntactic consequence 

switch between two types of squares (viz. a classical square of opposition vs. a degenerate 

square). In this section, however, we have encountered a much more radical manifestation of 

																																																								
12 Cf. Lenzen (2017, p. 11) for a typical example, and Smessaert and Demey (2014, pp. 530-531) for further 

discussion. 
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this general phenomenon. For example, if we keep the assumption of soundness fixed, then 

adding or dropping the assumption of completeness makes the Aristotelian diagram for the 

interaction between semantic and syntactic consequence switch between two very different 

types of diagrams (viz. the Lenzen octagon in Figure 4 vs. the classical square of opposition in 

Figure 7). And vice versa, if we keep the assumption of completeness fixed, then adding or 

dropping the assumption of soundness makes the Aristotelian diagram for the interaction 

between semantic and syntactic consequence again switch between a Lenzen octagon (Figure 

5) and a classical square of opposition (Figure 7). 

	

 

6 Conclusion 

 

In this paper I have shown that syntactic logical consequence gives rise to a metalogical square 

of opposition, just like semantic logical consequence. Unlike the definitions of the semantic 

consequence statements, the definitions of the syntactic consequence statements cannot be 

interpreted in terms of the categorical statements from Aristotelian syllogistics. Nevertheless, 

the theorem proved in Section 4 provides an alternative characterization of syntactic 

consequence, thereby yielding another, equally elegant interpretation in terms of the categorical 

statements. Hence, we now have a semantic consequence square as well as a syntactic 

consequence square, both of which exhibit a strong and potentially very useful analogy with 

the categorical statements from syllogistics. I have also constructed a metalogical Aristotelian 

diagram that incorporates both semantic and syntactic consequence, as well as the interaction 

between them (as determined by the soundness and/or completeness of the underlying logical 

system). Along the way, I have pointed out several metalogical manifestations of a broader 

phenomenon that is well-known in logical geometry, viz. the idea that Aristotelian diagrams 

can be sensitive with respect to certain background assumptions. We encountered relatively 

mild cases of this phenomenon (classical square of opposition vs. degenerate square), but also 

more radical cases (Lenzen octagon vs. classical square of opposition). 

 

All of this provides further support for the methodological/heuristic perspective on Aristotelian 

diagrams, which holds that the main use of these diagrams lies in facilitating analogies and 

comparisons between prima facie unrelated domains of investigation. Most specific examples 

that have hitherto been adduced in favor of this perspective, concern analogies between systems 

that are both situated at the object-logical level, such as Russell’s theory of definite descriptions 
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and public announcement logic. By contrast, the cases discussed in this paper cut across the 

object-/meta-level divide, and are concerned with analogies between the metalogical notions of 

semantic and syntactic consequence and the object-logical categorical statements. This shows 

that the methodological/heuristic potential of Aristotelian diagrams might be even larger than 

has previously been thought. 

 

Throughout the paper, I have already briefly hinted at the methodological potential of the new 

metalogical diagrams that have been developed here (cf. Figures 3 – 7), for example regarding 

the entailment from Γ ⊨ 𝜑 to Γ ⊭ ¬𝜑 and its dependence on the assumption that Γ be satisfiable 

(cf. Section 2), and the fact that	it is not always the case that Γ ⊢ 𝜑 or Γ ⊢ ¬𝜑 (cf. Section 4). 

In future work I will explore this methodological potential in a more systematic fashion. The 

elegant yet simple characterization of syntactic consequence in terms of the categorical 

statements (cf. the theorems proved in Section 4) will likely be of crucial importance in this 

respect. 
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