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Abstract
Portmanteaus are a type of neologism combining two
source words, for example brunch (from breakfast and
lunch), and are popular for naming all kinds of phenom-
ena. While coming up with suitable portmanteaus is a
difficult creative endeavor, several portmanteau genera-
tors already exist for assistance in this process. When
using these systems, it is often hard to find out which
of the generated portmanteau is likely to be the best,
and consequently also hard to automatically compare
the quality of different portmanteau generators. In this
paper, we create a model that can rank portmanteaus for
two given source words, which thus aims to help find
the best portmanteau to help further improve portman-
teau generators. Our model first uses XGBoost trained
on unlabeled generated outputs and existing portman-
teaus to learn to rank portmanteaus and shows that this
already greatly improves the performance of the ini-
tial generator. By ranking outputs of a state-of-the-art
generator and a new simple portmanteau generator, we
show by validating its quality in a human evaluation that
the ranker can help visually identify the better gener-
ator, thus providing an alternative to only calculating
real portmanteau generation frequency. Additionally,
we find that this first model performs almost as well
as a model trained on more fine-grained human-labeled
portmanteaus. This indicates that just using generated
and real portmanteaus is enough to create a ranker that
can in turn improve the quality of the initial generator,
and could additionally be of use in comparing different
portmanteau generators.

Introduction
A portmanteau is a type of neologism mixing two words
based on their pronunciation and meaning, where the result-
ing word is not simply concatenating the two words into a
normal compound word, for example brunch (which mixes
breakfast and lunch). This wordplay is popular in all kinds
of domains, such as naming new objects (e.g. jeggings for
jeans leggings), pop culture (e.g. for relationship names like
Brangelina for Brad Pitt and Angelina Jolie), animals (e.g.
crossbreeds like liger for the child of a tiger and lion) and
company names (e.g. Netflix for internet flicks). There al-
ready exist several portmanteau generators that use heuris-
tics or neural networks for estimating the quality of port-
manteaus in their generation process (Smith, Hintze, and

Ventura 2014; Deri and Knight 2015; Gangal et al. 2017;
Simon 2018). In this study, we focus on the task of port-
manteau quality estimation, which can help further enhance
the generation quality of any other portmanteau generator
by sorting the outputs on their perceived quality. To achieve
this, we create a portmanteau evaluator for further ranking
the outputted portmanteaus. Additionally, this technique
further allows comparing different portmanteau generators.
More specifically, we implement a model ranking the qual-
ity of a merge of two input source words, and show that this
model can be effectively trained using only generated and
existing real portmanteaus.

Background
Portmanteau Generators
Nehovah is a collaborative, rule-based system for generating
portmanteaus that use synonyms and hyponyms of the input
source words to enrich the search space (Smith, Hintze, and
Ventura 2014). The user can decide which portmanteau fac-
tors are most important. It searches for possible letter-level
overlap, thus limiting its possibility to generate certain port-
manteaus without letter overlap (e.g. brunch).

Frenemy is a more data-driven approach for generating
portmanteaus (Deri and Knight 2015). It trained a multi-tape
finite-state transducer to map the source words to the port-
manteau using existing portmanteaus from Wikipedia and
Wiktionary. By mixing the two given source words, it gen-
erates the real portmanteau 45% of the time.

Charmanteau extends the dataset used in Frenemy with
Urban Dictionary and BCU Neologism List dataset (Gangal
et al. 2017). This model does not use explicit grapheme to
phoneme conversion but uses character embeddings to train
a noisy channel model, maximizing the probability of gener-
ating the correct portmanteau given the source words. This
is implemented as a neural sequence-to-sequence model us-
ing LSTMs and attention. When generating portmanteaus
for two given source words, its implementation only returns
the top 5 portmanteaus.

Entendrepreneur uses FastText word embeddings to find
the best related source words for creating a portmanteau (Si-
mon 2018). The focus of this system is more on finding
words with good overlap, and thus much less on finding the
ideal way of merging two words. As such, many existing



portmanteaus can not be generated with this system.

Learning to Rank
In a learning to rank problem, the task is to predict the order
of a given set of elements. A popular system for doing so
is XGBoost trees (Chen and Guestrin 2016). This algorithm
uses a form of tree boosting, which iteratively extends sim-
ple decision trees with other simple decision trees to mini-
mize the quadratic error of the model. There are three types
of ranking models, namely those that predict scores for each
element, compare elements pairwise, or list-wise. While the
last one usually gets the best performance, they are the most
difficult to model and train. In this paper, we thus focus on
pairwise comparison.

Ranking Portmanteaus
To rank portmanteaus, we employ the following features,
inspired by the aforementioned portmanteau generators.
• Word structure: proportion the source words present in

the portmanteau by calculating the length of overlap be-
tween the cut-off parts of the source words and the actual
portmanteau (Smith, Hintze, and Ventura 2014).

• Source word fraction: fraction of the length of the
longest part of the source words present in the portman-
teau.

• Fraction of syllables: number of syllables of the port-
manteau divided by the number of syllables of the source
words, as well as for each source word separately.

• Memorability: meaningful character ratio (Schiavoni et
al. 2014), which is the ratio of meaningful subsequent
characters that create a word present in WordNet (Miller
1995).

• Pronounceability: weighted frequency of letter n-grams
(n ∈ [2, 4]) in the Wordlist Corpus from NLTK (Bird,
Klein, and Loper 2009), since popular longer n-grams
serve as proxy for pronounceable words.

• Length of portmanteau the absolute length of the port-
manteau, and also features for the difference in length be-
tween the portmanteau and both source words separately.
These features are used to train an XGBoost model that

learns to rank real portmanteaus higher than generated ones.
This is done by assigning a weight of 1 to the real portman-
teau, and a weight of 0 to all portmanteaus generated by the
portmanteau generator for the same source words. While
this assumes generated portmanteaus are worse than exist-
ing portmanteaus, it might still result in a model that can
distinguish portmanteaus on their quality, as this assump-
tion is usually true (as confirmed by our evaluation). One
downside to using this way of ranking is that it might assign
the same rank to multiple elements.

Simple Portmanteau Generator
We want to evaluate whether the ranker can differentiate be-
tween different portmanteau generators. However, due to
the nature of the ranker and its dataset, we only want to
compare their word combiner algorithm, rather than their

synonym exploration capabilities. As such, comparing to
generators like Entendrepreneur and Nehovah (which focus
on finding good related words) would unfairly disadvantage
them. While Charmanteau and Frenemy are thus the only
documented models we could meaningfully compare, we
were only able to gain access to the code of the former. We
thus created a simple portmanteau generation algorithm, that
while generating decent portmanteaus, should perform mea-
surably worse than Charmanteau due to its lack of portman-
teau quality knowledge.

We use three simple mechanisms simultaneously in the
simple portmanteau generator, namely splitting on hyphen-
ation, finding mutual letters and random splits. First, the
source words are split using Pyphen1. If source words have
letters in common, the naive generator adds combinations
of these subwords split on the common letter, except if the
common letter is the first letter of the first source word or
the last letter of the last source word. After these generation
methods, the algorithm adds five additional portmanteaus by
splitting the source words into random possible substrings
larger than 1, and merging randomly to create the remaining
candidate portmanteaus.

Data
Real Portmanteau Dataset Extension We extended the
dataset from Charmanteau with the more recently added
portmanteaus from Wikipedia. We then filtered out nor-
mal compound words, portmanteaus based on proper names
(like Jedward), fandom names (like Cumberfan) and chem-
ical compounds (like glyoxime).

Negatives Generation For the source words of each real
portmanteaus from the Wikipedia dataset, we used Char-
manteau to generate five portmanteaus, which we use as neg-
atives for training the ranking model.

Human-Annotated Labels We generated a portmanteau
dataset and annotated this to evaluate the human-perceived
quality of portmanteaus. We did this by first training an XG-
Boost ranking model on the aforementioned dataset. Then,
for 700 real portmanteaus, we generated portmanteaus using
Charmanteau and our simple generator, and took the top 4
of each list according to our ranker, and added the first three
that were not the real portmanteau, resulting in 700 port-
manteau groups of at most 7 possible portmanteaus. Each
generator thus provided 2100 portmanteaus, of which there
was an overlap of 331 that both generated. The annotators
were 10 non-experts, recruited by sending a link to the an-
notation platform to willing friends of the first author. Each
human annotator could annotate as many or as few portman-
teau sets as they wanted. Human annotators were allowed to
annotate these portmanteaus with labels denoting first, sec-
ond or third place, and also annotate portmanteaus as “very
bad” for portmanteaus that were fundamentally worse (e.g.
due to being hard to pronounce) than all others. In case a hu-
man perceives two portmanteaus to be of equal quality, the

1https://pyphen.org



labels could be used multiple times within the same port-
manteau group (e.g. shared first place).

Evaluation
In the evaluation, we aim to answer the following questions
about our portmanteau ranker:

Q1 Is the ranker better at identifying existing portmanteaus
than previous approaches?

Q2 Can the ranker improve the quality of the outputs of ex-
isting portmanteau generators?

Q3 Can the ranker evaluate the quality of two given portman-
teau generators, and help identify the better one?

Q4 How well does the ranker trained on generated negative
portmanteaus approximate the human-perceived quality?

Q5 Is just knowing the real or best portmanteau enough for
improving generation quality? In other words, how fine-
grained does the ranker training dataset need to be?

Identifying Real Portmanteaus
Due to multiple elements possibly being assigned the same
rank, we break the ties in favor of the real portmanteau and
in favor of the generated portmanteau to find the best and
worst-case performance. We compare this with Charman-
teau in Table 1. Note that Charmanteau is only able to gen-
erate 59% of the portmanteaus of our test set as one of the
five candidates it generates and that we thus only use this
part of the test set to more fairly compare the ranking capa-
bilities of Charmanteau and our ranker. In the worst case,
58.63% of all portmanteau groups the right one was identi-
fied in the first position, and in the best case 72.57%. This
means that either way, the ranker is better at identifying the
best portmanteau given the top 5 possibilities generated by
Charmanteau. Note that due to the nature of portmanteau
quality in relation to its real daily use, false positives might
actually still be good portmanteaus too (e.g. sendex instead
of sensex for sensitive + index, and plebevision instead of
plebvision for pleb + television). To answer Q1: our ranking
model does indeed perform better than the state-of-the-art in
identifying the real portmanteau.

Several portmanteau research projects used the real port-
manteau metric to measure a generator’s quality. Given that
we used only Charmanteau generated portmanteaus to aug-
ment the dataset, adding the ranker to filter the generator’s
output would help it achieve higher scores on this quality
metric on average, thus positively answering Q2.

Comparing Portmanteau Generators
We hypothesize that this ranking model could potentially be
used as a form of automatic quality evaluation. Portman-
teau generators are often evaluated in terms of how many
times the real portmanteau can be reconstructed (Gangal et
al. 2017; Deri and Knight 2015). A ranking model could
automatically rank generated portmanteaus from different
sources. Assuming the ranker does a good job estimat-
ing relative quality (which it does according to Table 1),
the higher a generator’s outputs are ranked compared to the

1st 2nd 3rd 4th 5th

Charmanteau 45.70% 20.97% 15.01% 9.71% 8.61%
Ranker (worst case) 58.63% 17.26% 10.62% 7.30% 6.19%
Ranker (best case) 72.57% 12.83% 7.74% 4.65% 2.21%

Table 1: Comparing how often the true portmanteau is
ranked as the best portmanteau given four other portman-
teaus generated by Charmanteau using the 59.38% of the
test set where Charmanteau is actually able to generate the
real portmanteau. The worst and best case reflect the tie-
breaking mechanism in the ranker.

other, the better one would expect it to be. This would then
create a less accurate metric than full human evaluation for
quality, but a much easier metric for comparing portman-
teau generators to each other. By visually plotting how high
generated portmanteaus are ranked, one can thus see which
rankings are more populated by which algorithms, regard-
less of how many outputs are generated by each generator.
This thus provides a more detailed way than only comparing
real portmanteau generation frequency.
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Figure 1: Comparing Charmanteau and the simple port-
manteau generator automatically. Using the ranking algo-
rithm, the list of generated portmanteaus by each genera-
tor is sorted, and then merged. As the ties can be ignored,
the figure shows that Charmanteau’s largest peak is earlier
than the simple algorithm’s, showing that Charmanteau thus
indeed generates higher-ranking portmanteaus more consis-
tently than the simple baseline.

We used our simple portmanteau generator and Char-
manteau to generate portmanteaus for the source words of
the test dataset and made our ranker rank all given port-
manteaus. The algorithm ranked both lists separately, then
merged them in a similar way as the merge sort step by com-
paring the first elements of each queue. If there was a tie
between the highest of the two lists, then it counted as a tie,
which can be ignored in the visualization. If one is better
than the other, it polls the highest from the two and adds this
as the current rank for this generator’s element. Counting
how often a generator generates elements at a certain rank,
then visually shows how well their generated portmanteaus



perform compared to the other. The results in Figure 1 show
what we expected, namely that Charmanteau performs bet-
ter than the simple algorithm. The chart makes this clear
by showing that Charmanteau peaks at the 3rd rank, and the
simple generator at 1st, but also at the 9th position, and the
fact that most of the mass of the simpler algorithm is ranked
lower than that of Charmanteau. This is because the simple
generator generates much more candidates (at least five per
input source words, while Charmanteau always generates
exactly five), and thus on average worse ones while also be-
ing able to generate some good portmanteaus that Charman-
teau can not or did not. This is in line with Figure 1, where
we can see that according to the human evaluation, Char-
manteau indeed generates 59.89% of the highest-ranking
portmanteaus, while the simple generator only 54.40%, and
also much more of the very bad and fewer higher-ranking
ones. While we used ranked versions of both generators in
the human evaluation, the fact that the ranker and the human
evaluation both confirm that the simple generator performs
worse (as it is designed to do), helps answer Q3. This in
combination with Figure 2 answers Q3: yes, the ranker can
help identify and visualize the better performance of Char-
manteau compared to the simple generator. This fact is a
promising result for the automatic evaluation of generators,
given the easy-to-create ranker training dataset.
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Real portmanteaus generated by ranked simple algorithm
Generated by ranked Charmanteau
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Generated by ranked simple algorithm

Figure 2: Human evaluation annotations for the portman-
teau sources, with at most seven portmanteaus per group of
source words (existing portmanteau plus at most three of
each source, with potentially fewer due to both generating
the same portmanteau).

Dataset Granularity & Human Evaluation
As mentioned in the Data section, we use the human annota-
tions to create datasets for training a portmanteau ranker to
evaluate the best dataset granularity and the need for human-
annotated labels. Linking the resulting labels with the source
of the portmanteau (Figure 2), we can see that while most of
the highest-ranked portmanteaus were the real portmanteau,
the generators also came up with high-ranking portmanteaus
that weren’t the real portmanteau. An example of a gener-

ated portmanteau that was ranked first, is brocket for broken
+ bracket (whereas the real one is broket. An example of a
portmanteau labeled “very bad” for this pair was bket.

The human annotations were used to create three new
datasets. One dataset is similar to the first ranker using
only labels reflecting which portmanteau is used in reality
(called “Only real”), one with only the highest-ranking ones
weighted as 1, and all others as 0 (named “Only highest”),
and the third dataset (called “All annotations”) using weight
3 for first place, 2 for second place, 1 for third place, 0 for
unlabeled and -2 for the “very bad” label. This extra in-
formation about many possible pairs would in theory help
ranking portmanteaus in a more detailed way. We trained
the same XGBoost ranker on our three new datasets. Ta-
ble 2 shows that the ranker trained on only the real port-
manteaus can still predict which one is performing best
with 1.44% less accuracy than the one trained on the truly
highest-ranking portmanteaus. This answers Q4, as just us-
ing real portmanteaus seems to work about as well as anno-
tated high ranking portmanteaus. This can be partially ex-
plained by the fact that properties of real portmanteaus are
closely correlated to the first place ranking portmanteaus,
and that 60.03% of the real portmanteaus are also labeled
best (Figure 2), thus validating our assumption for generat-
ing negative examples.

To answer Q5, we compared the last two rankers, which
use a different label coarseness. We can see that adding more
fine-grained annotations does not significantly improve the
performance in predicting the best portmanteaus. Addition-
ally, the higher number of 4th and lower-ranking real port-
manteaus could indicate light degradation of the model for
predicting the best portmanteaus.

1st 2nd 3rd 4th ≥5th

Only real 42.58% 19.14% 12.92% 11.96% 13.40%
Only highest 44.02% 20.10% 12.44% 10.53% 12.92%
All annotations 44.98% 18.66% 9.57% 11.96% 14.83%

Table 2: Comparing how often the highest-ranking portman-
teau according to human evaluation is ranked as the best
portmanteau out of the seven possibilities for each portman-
teau group. Ties were broken not in favor of the actual
highest-ranking (worst case rank).

Code and Data
We released our code and data on https://github.
com/larapollet/portmanteau-ranker.

Future Work
It would be interesting to validate if this approach also works
for improving other types of generation, such as other types
of wordplay e.g. acronyms and anagrams, or even non-
textual domains. For example, by taking existing, funny
anagrams, generating some other ones with a simple gener-
ator, and learning to rank anagrams, which in turn improves
the average quality of the outputs the simple generator by



only outputting the best few. Another interesting further ex-
tension would be to allow for ranking portmanteaus based
on semantically related source words and thus have a model
ranking more diverse portmanteaus, similar to the Frenemy
and Entrendrepreneur generators.

Conclusion
We created a model for automatically ranking portmanteaus.
We showed that using only real portmanteaus, and generat-
ing other portmanteaus with a particular generator, can be
used as a training dataset for a ranker that in turn can help
improve the average quality of the outputs of that genera-
tor. This relies on the assumption that real portmanteaus are
generally better than other possible portmanteaus, which we
confirmed in our human evaluation. We also found that us-
ing human-annotated portmanteaus only slightly improved
the quality compared to using only using labels reflecting
whether or not the portmanteaus were used in real life. We
also found that the largest increase in performance mostly
came from only using the label for the best portmanteaus.
Both these findings give rise to an optimistic view about the
ease of data collection when replicating this model to im-
prove the output quality of other types of text generators.

Acknowledgments
We would like to thank the volunteers for label-
ing the portmanteaus. Thomas Winters is a fellow
of the Research Foundation-Flanders (FWO-Vlaanderen,
11C7720N). Pieter Delobelle was supported by the Research
Foundation - Flanders (FWO) under EOS No. 30992574
(VeriLearn) and also received funding from the Flemish
Government under the “Onderzoeksprogramma Artificiële
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